Advertisement

Environmental Pollution by Hydrocarbons in Colombia and Its Impact on the Health of Aquatic Ecosystems

  • Yohana M. Velasco-SantamaríaEmail author
  • Wilson Corredor-Santamaría
  • Alexander Torres-Tabares
Chapter

Abstract

The extraction of oil plays an important role in the productive sector, contributing to the Gross Domestic Product (GDP) in Colombia, becoming in recent years a determining activity for the economic balance and development of the country. However, the environmental impact due to the oil extraction and spill accidents has led to contamination of soil and water sources, mortality of fauna and flora, or changes in the dynamics of natural ecosystems, among others. Biomonitoring the impact of oil pollution using aquatic organisms, especially native bioindicators, has a high ecological relevance. At this regard, fish are considered as one of the main sentinel species for assessing the quality of aquatic ecosystems as they are ubiquitous in most aquatic environments exposed to pollutants and are ecologically relevant. Our data evidence a negative effect in fish from sites where wastewater is discharged from the oil industry with alterations on the hematological parameters, presence of genotoxicity, alteration in the antioxidant response, and presence of deleterious changes in the architecture of the tissues which could lead to a possible decrease in fish populations exposed to these conditions. On the other hand, green microalgae such as Chlorella vulgaris is highly sensitive to environmental changes and is also used as an important bioindicator. Different biomarkers such as growth, cell size, chlorophyll, and the enzymatic activity associated with oxidative stress have been used, which have demonstrated the impact of petroleum compounds. Both native fish and microalgae are good sentinels of freshwater potentially contaminated by hydrocarbons.

Notes

Acknowledgments

The authors are very grateful to the colleagues of the research group BioTox from the University of the Llanos, Villavicencio, Colombia for their support during the experimental work done during the studies, especially to Ivonne Calderón-Delgado and Diego Mora-Solarte.

References

  1. Abdel-Moneim AM, Al-Kahtani MA, Elmenshawy OM (2012) Histopathological biomarkers in gills and liver of Oreochromis niloticus from polluted wetland environments, Saudi Arabia. Chemosphere 88:1028–1035Google Scholar
  2. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123CrossRefGoogle Scholar
  3. Achuba FI, Osakwe SA (2003) Petroleum – induced free radical toxicity in African catfish (Clarias gariepinus). Fish Physiol Biochem 29:97–103CrossRefGoogle Scholar
  4. Acuña-González J, Vargas-Zamora JA, Gómez-Ramírez E, García-Céspedes J (2004) Hidrocarburos de petróleo, disueltos y dispersos, en cuatro ambientes costeros de Costa Rica. Rev Biol Trop 52:43–50PubMedPubMedCentralGoogle Scholar
  5. Aguilar-León D (2011) Uso de la microalga Scenedesmus sp. como potencial especie bioindicadora de calidad de los cuerpos de agua receptores de efluentes petroleros. Tesis de Pregrado, Medicina Veterinaria y Zootecnia, Universidad de los Llanos, 38 pGoogle Scholar
  6. Ali FK, El-Shehawi AM, Seehy MA (2008) Micronucleus test in fish genome: a sensitive monitor for aquatic pollution. Afr J Biotechnol 7:606–612CrossRefGoogle Scholar
  7. Assis HCS, Nicareta L, Salvo LM, Klemz C, Truppel JH, Calegari R (2009) Biochemical biomarkers of exposure to deltamethrin in freshwater fish, Ancistrus multispinis. Braz Arch Biol Technol 52:1401–1407CrossRefGoogle Scholar
  8. Bakke T, Klungsøyr J, Sanni S (2013) Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar Environ Res 92:154–169CrossRefPubMedPubMedCentralGoogle Scholar
  9. Barber LB, Lee KE, Swackhamer DL, Schoenfuss HL (2007) Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds. Aquat Toxicol 82:36–46CrossRefPubMedPubMedCentralGoogle Scholar
  10. Behera BK, Das A, Sarkar DJ, Weerathunge P, Parida PK, Das BK, Thavamani P, Ramanathan R, Bansal V (2018) Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation. Environ Pollut 241:212–233CrossRefPubMedPubMedCentralGoogle Scholar
  11. Calderón-Delgado IC, Mora-Solarte DA, Velasco-Santamaría YM (2019) Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential bioremediation. Environ Monit Assess 191:399.  https://doi.org/10.1007/s10661-019-7519-8CrossRefPubMedPubMedCentralGoogle Scholar
  12. Calderón-Delgado IC, Mora-Solarte DA, Velasco-Santamaría YM (2020) Respuestas fisiológicas y capacidad antioxidante de Chlorella vulgaris (Chlorellaceae) expuesta a fenantreno. Acta Biol Colomb 25(2)Google Scholar
  13. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849CrossRefPubMedPubMedCentralGoogle Scholar
  14. Camargo MMP, Martinez CBR (2006) Biochemical and physiological biomarkers in Prochilodus lineatus submitted to in situ tests in an urban stream in southern Brazil. Environ Toxicol Pharmacol 21:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carvalho CS, Bernusso VA, Araújo HSS, Evaldo L, Fernandes MN (2012) Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere 89:60–69Google Scholar
  16. Çavas T, Ergene-Gözükara S (2005) Induction of micronuclei and nuclear abnormalities in Oreochromis niloticus following exposure to petroleum refinery and chromium processing plant effluents. Aquat Toxicol 74:264–271CrossRefPubMedPubMedCentralGoogle Scholar
  17. Çavaş T, Garanko NN, Arkhipchuk VV (2005) Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food Chem Toxicol 43:569–574CrossRefPubMedPubMedCentralGoogle Scholar
  18. Costa DDM, Neto FF, Costa MDM, Morais RN, Garcia JRE, Esquivel BM, Oliveira RCA (2010) Vitellogenesis and other physiological responses induced by 17-β-estradiol in males of freshwater fish Rhamdia quelen. Comp Biochem Physiol C Toxicol Pharmacol 151:248–257CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cubillos J, Pug P, Gutiérrez J, Paredes D (2014) Phytoremediation of water and soils contaminated by petroleum hydrocarbons. Ingeniería y competitividad 16(1):131–146CrossRefGoogle Scholar
  20. Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75(3):297–302CrossRefPubMedPubMedCentralGoogle Scholar
  21. Díaz-Martínez E, Alarcón A, Ferrera- Cerrato R, Almaraz- Suarez JJ, García- Barradas O (2013) Crecimiento de Casuarina equisetifolia (Casuarinaceae) en suelo con diesel, y aplicación de bioestimulación y bioaumentación. Rev Biol Trop 61(3):1039–1052CrossRefPubMedPubMedCentralGoogle Scholar
  22. Diniz MS, Peres I, Pihan JC (2005) Comparative study of the estrogenic responses of mirror carp (Cyprinus carpio) exposed to treated municipal sewage effluent (Lisbon) during two periods in different seasons. Sci Total Environ 349:129–139CrossRefPubMedPubMedCentralGoogle Scholar
  23. EIA (2019) U.S. Energy Information Administration. Country Analysis Executive Summary: ColombiaGoogle Scholar
  24. Elahee KB, Bhagwant S (2007) Hematological and gill histopathological parameters of three tropical fish species from a polluted lagoon on the west coast of Mauritius. Ecotoxicol Environ Saf 68:361–371CrossRefPubMedPubMedCentralGoogle Scholar
  25. García-Medina S, Razo-Estrada C, Galar-Martinez M, Cortéz-Barberena E, Gómez-Oliván LM, Álvarez-González I, Madrigal-Bujaidar E (2011) Genotoxic and cytotoxic effects induced by aluminum in the lymphocytes of the common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 153:113–118CrossRefPubMedPubMedCentralGoogle Scholar
  26. González N, Simarro R, Molina MC, Bautista LF, Delgado L, Villa JA (2011) Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. Bioresour Technol 102:9438–9446CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hansen W, Interwies E, Bär S, Kraemer R.A, Michalke P (2001) Effluent charging systems in the EU member states. Ed. In: Palinkas P(ed) Environment Series, ENVI 104 EN, 09-2001. European Parliament. 140 pGoogle Scholar
  28. Hellou J, Ross N, Moon T (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res 19:2007–2023CrossRefGoogle Scholar
  29. Ishikawa NM, Ranzani-Paiva MJT, Lombardi JV, Ferreira CM (2007) Hematological parameters in Nile Tilápia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Braz Arch Biol Technol 50:619–626CrossRefGoogle Scholar
  30. Jerônimo GT, Martins ML, Bachmann F, Greinert-Goulart JA, Schmitt-Júnior AA, Ghiraldelli L (2009) Hematological parameters of Pimelodus maculatus (Osteichthyes: Pimelodidae) from polluted and non-polluted sites in the Itajaí-Açu river, Santa Catarina State, Brazil. Acta Sci Biol Sci 31:179–283Google Scholar
  31. Katsumiti A, Franca PP, Silva Costa GP, Zandona EM, Benincá C, Silva de Assis HC, Cestari M, Maschio J, Randi M, Silva CA, Roche H, Oliveira Ribeiro CA (2013) Evaluation five years after a Refinery oil spill in freshwater wetland - Paraná State, Southern of Brazil. Ecotoxicol Environ Contam 8:77–87Google Scholar
  32. Kayode SJ, Shamusideen SA (2010) Haematological studies of Oreochromis niloticus exposed to diesel and drilling fluid in Lagos, Nigeria. Int J Biodivers Conserv 2:130–133Google Scholar
  33. Kumar G, Nandan B (2014) Copper Toxicity: haematological and histopathological changes and prophylactic role of vitamin C in the fish, Anabas testudineus (Bloch, 1792). J Zool Stud 1:4–13Google Scholar
  34. Kumari U, Mittal S, Mittal AK (2012) Surface ultrastructure of the gill filaments and the secondary lamellae of the catfish, Rita rita, and the carp, Cirrhinus mrigala. Microsc Res Tech 75:433–440CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lawal AT (2017) Polycyclic aromatic hydrocarbons. A review. Cogent Environ Sci 3(1)Google Scholar
  36. Lima ALC, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensic 6(2):109–131CrossRefGoogle Scholar
  37. Liu XJ, Luo Z, Xiong BX, Liu X, Zhao YH, Hu GF, Lv GJ (2010) Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicol Environ Saf 73:1286–1291Google Scholar
  38. Lukin A, Sharova J, Belicheva L, Camus L (2011) Assessment of fish health status in the Pechora River: effects of contamination. Ecotoxicol Environ Saf 74:355–365CrossRefGoogle Scholar
  39. Maceda-Veiga A, Monroy M, Viscor G, De Sostoa A (2010) Changes in non-specific biomarkers in the Mediterranean barbel (Barbus meridionalis) exposed to sewage effluents in a Mediterranean stream (Catalonia, NE Spain). Aquat Toxicol 100:229–237CrossRefGoogle Scholar
  40. Manzetti S (2013) Polycyclic aromatic hydrocarbons in the environment: environmental fate and transformation. Polycycl Aromat Compd 33(4):311–330CrossRefGoogle Scholar
  41. Mendelssohn IA, Andersen GL, Baltz D, Caffey R, Carman K, Fleeger J, Joye SB, Lin Q, Maltby E, Overton EB, Rozas L (2012) Oil impacts on coastal wetlands: implications for the Mississippi River Delta ecosystem after the Deepwater horizon oil spill. Bioscience 62:562–574CrossRefGoogle Scholar
  42. Miron DDS, Moraes B, Becker AG, Crestani M, Spanevello R, Loro VL, Baldisserotto B (2008) Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture 277:192–196CrossRefGoogle Scholar
  43. Moharram SG, Wahbi OM, El-Greisy ZA (2011) Effect of polluted water from the Egyptian Eastern Mediterranean coast on reproductive, toxicological and hematological characteristics of Siganus rivulatus. Pak J Biol Sci 14:668–681CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ossana NA, Salibián A (2013) Micronucleus test for monitoring the genotoxic potential of the surface water of Luján River (Argentina) using erythrocytes of Lithobates catesbeianus tadpoles. Ecotoxicol Environ Contam 8:67–74Google Scholar
  45. Otero-Paternina AM, Cruz-Casallas PE, Velasco-Santamaría YM (2013) Evaluación del efecto del hidrocarburo fenantreno sobre el crecimiento de Chlorella vulgaris (Chlorellaceae). Acta Biol Colombiana 18(1):87–93Google Scholar
  46. Peixoto F, Alves-Fernandes D, Santos D, Fontaínhas-Fernandes A (2006) Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pestic Biochem Physiol 85:91–96CrossRefGoogle Scholar
  47. Qiu Y-W, Zhang G, Liu G-Q, Guo L-L, Li X-D, Wai O (2009) Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuar Coast Shelf Sci 83(1):60–66CrossRefGoogle Scholar
  48. Saadoun IMK (2015) Impact of oil spills on marine life. Emerging pollutants in the environment - current and further implicationsGoogle Scholar
  49. Santos RN, Andrade CC, Santos LN, Santos AFGN, Araújo FG (2006) Testicular maturation of Oligosarcus hepsetus (Cuvier) (Actinopterygii, Characidae) in a Brazilian tropical reservoir. Braz J Biol 66:143–150Google Scholar
  50. Schifter I, González-Macías C, Salazar-Coria L, Sánchez-Reyna G, González-Lozano C (2015) Long-term effects of discharges of produced water the marine environment from petroleum-related activities at Sonda de Campeche, Gulf of México. Environ Monit Assess 187(11):723CrossRefPubMedPubMedCentralGoogle Scholar
  51. Serrano MF, Torrado LM, Pérez DD (2013) Impacto de los derrames de crudo en las propiedades mecánicas de suelos arenosos. Ciencia y Tecnología 11:233–244Google Scholar
  52. Silva JPA, Muelbert AE, Oliveira EC, Fávaro LF (2010) Reproductive tactics used by the Lambari Astyanax aff. fasciatus in three water supply reservoirs in the same geographic region of the upper Iguaçu River. Neotrop Ichthyol 8:885–892CrossRefGoogle Scholar
  53. Soclo HH, Budzinski H, Garrigues P, Matsuzawa S (2008) Biota accumulation of polycyclic aromatic hydrocarbons in Benin coastal waters. Polycyclic Aromat Compd 28(2):112–127CrossRefGoogle Scholar
  54. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195CrossRefPubMedPubMedCentralGoogle Scholar
  55. Ssempebwa JC, Carpenter DO (2009) The generation, use and disposal of waste crankcase oil in developing countries: a case for Kampala district, Uganda. J Hazard Mater 161(2–3):835–841CrossRefPubMedPubMedCentralGoogle Scholar
  56. Talapatra SN, Ganguly P, Mukhopadhyay A, Banerjee SK (2007) Assessment of genetic biomarkers with special reference to micronucleated and binucleated erythrocytes in two fish species grown at industrial vicinity of thermal power plants, Kolkata, India. Asian J Water Environ Pollut 4:139–144Google Scholar
  57. Tavares-Dias M, Ono EA, Pilarski F, Moraes FR (2007) Can thrombocytes participate in the removal of cellular debris in the blood circulation of teleost fish? A cytochemical study and ultrastructural analysis. J Appl Ichthyol 23:709–712CrossRefGoogle Scholar
  58. Tavares-Dias M, Moraes FR, Martins ML (2008) Hematological assessment in four Brazilian teleost fish with parasitic infections, collected in feefishing from Franca, São Paulo, Brazil. Boletín do Instituto de Pesca, São Paulo 34:189–196Google Scholar
  59. Van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefPubMedPubMedCentralGoogle Scholar
  60. Velasco-Santamaría YM, Calderón-Delgado IC, Corredor-Santamaría W (in press). Gonadal histopathology as biomarker of endocrine disruption in native fish (Astyanax gr. bimaculatus and Aequidens metae) from a potentially contaminated river in Colombia. Neotrop IcthyolGoogle Scholar
  61. Velásquez AJA (2017) Contaminación de suelos y cuerpos de agua por hidrocarburos en Colombia. Fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental 8(1): 51–167Google Scholar
  62. Vera-Parra NF, Caro LJM, Otero-Paternina AM, Cruz-Casallas PE, Velasco-Santamaría YM (2011) Impacto del agua asociada a la producción de una explotación petrolera sobre la comunidad fitoperifitica del río Acacias (Meta, Colombia) durante la temporada de lluvias. Orinoquia 15(1):31–40CrossRefGoogle Scholar
  63. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276CrossRefPubMedPubMedCentralGoogle Scholar
  64. World Bank Group (2016) The changing wealth of nations: measuring sustainable development in the new millenniumGoogle Scholar
  65. Yu Y, Liu Y, Wu L (2013) Sorption and degradation of pharmaceuticals and personal care products (PPcPs) in soils. Environ Sci Pollut Res Int 20:4261–4267CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zabbey N, Olsson G (2017) Conflicts - oil exploration and water. Global Chall 1(5):1600015CrossRefGoogle Scholar
  67. Zaghloul KH, Hasheesh WS, Zahran IA, Marie MA (2007) Ecological and biological studies on the Nile tilapia Oreochromis niloticus along different sites of lake Burullus. Egypt J Aquat Biol Fish 11:57–88CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yohana M. Velasco-Santamaría
    • 1
    Email author
  • Wilson Corredor-Santamaría
    • 1
  • Alexander Torres-Tabares
    • 1
  1. 1.Grupo de Investigación en Biotecnología y Toxicología Acuática y Ambiental – BioTox, Escuela de Ciencias Animales, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los LlanosVillavicencio, MetaColombia

Personalised recommendations