Advertisement

Evaluation of the Toxicity of an Industrial Effluent Before and After a Treatment with Sn-Modified TiO2 Under UV Irradiation Through Oxidative Stress Biomarkers

  • Leobardo Manuel Gómez-OlivánEmail author
  • Dora Alicia Solís-Casados
  • Hariz Islas-Flores
  • Nely San Juan-Reyes
Chapter

Abstract

At present, the generation of wastewater is a major environmental problem of the pharmaceutical industry due to the toxicity of some of the substances contained in them, which can be generated in various aquatic organisms. Due to this situation, appropriate treatments for wastewater treatment should be explored and implemented. Traditional treatments have proven to be deficient in the removal of emerging pollutants. Currently, advanced oxidation processes (AOPs) have shown to be a promising option for this purpose. Within these, heterogeneous photocatalysis is an important alternative, which uses TiO2 as catalyst and ultraviolet light for the formation of hydroxyl radicals, which are powerful and nonselective oxidants capable of decomposing and mineralizing most organic compounds. The objective of this study was to evaluate the toxicity of an industrial effluent (wastewater from a pharmaceutical industry dedicated to the manufacture of NSAIDs) before and after a treatment using Sn-modified TiO2 under UV irradiation. The physicochemical properties were evaluated. NSAID concentrations, acute toxicity, and biomarkers of oxidative stress were determined before and after the photocatalytic treatment. The toxicity tests were performed on the amphipod Hyalella azteca. The results showed a decrease in the values of the physicochemical parameters, as well as the concentrations of DCF, IBP, NPX, and PCT after the treatment. LC50 values after the photocatalytic treatment were reduced by 430%. Likewise, the cellular oxidation biomarkers and antioxidation decreased drastically after treatment. The findings obtained in this study allow us to conclude that the treatment used is effective both chemically and biologically. Also, this treatment is effective for the elimination of microcontaminants present in complex mixtures such as the effluents of industrial wastewater.

Keywords

NSAIDs Amphipods Photocatalytic treatments TiO2 Toxicity 

References

  1. Asensio C, Levoin N, Guillaume C, Guerquin MJ, Rouguieg K, Chrétien F, Chapleur Y, Netter P, Minn A, Lapicque F (2007) Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochem Pharmacol 73:405–416CrossRefGoogle Scholar
  2. Boelsterli UA (2003) Mechanistic toxicology: the molecular basis of how chemicals disrupt biological targets. Taylor & Francis/CRC Press. [cited 3 September 2018]. Available from http://books.google.com/books?hl=en&lr=&id=lyFpIWr1H1MC&oi=fnd&pg=PA1&dq=Mechanistic+toxicology+:+the+molecular+basis+of+how+chemicals+disrupt+biological+targets&ots=2yBeUKp6u5&sig=AsHnQBSg7IoeqZb2yuf4qPwSVdw%5Cn http://www.worldcat.org/oclc/53003932
  3. Boorman GA, Dellarco V, Dunnick JK, Chapin RE, Hunter S, Hauchman F, Gardner H, Mike C, Sills RC (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Health Perspect 107:207–217PubMedPubMedCentralGoogle Scholar
  4. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefGoogle Scholar
  5. Burcham PC (2007) Modified protein carbonyl assay detects oxidised membrane proteins: a new tool for assessing drug- and chemically-induced oxidative cell injury. J Pharmacol Toxicol Methods 56:18–22CrossRefGoogle Scholar
  6. Cardoso-Vera JD, Islas-Flores H, SanJuan-Reyes N, Montero-Castro EI, Galar-Martínez M, García-Medina S, Elizalde-Velázquez A, Dublán-García O, Gómez-Oliván LM (2017) Comparative study of diclofenac-induced embryotoxicity and teratogenesis in Xenopus laevis and Lithobates catesbeianus, using the frog embryo teratogenesis assay: Xenopus (FETAX). Sci Total Environ 574:467–475CrossRefGoogle Scholar
  7. Chilo NH (1999) El citocromo P450 y su rol en la hepatotoxicidad inducida por drogas. Enfermedades del Aparato digestivo 2:34–37Google Scholar
  8. Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315CrossRefGoogle Scholar
  9. Galal-Gorchev H, Ozolins G, Bonnefoy X (1993) Revision of the WHO guidelines for drinking water quality. Annali dell’Istituto Superiore di Sanita 29:335–345PubMedGoogle Scholar
  10. Galar-Martínez M, García-Medina S, Gómez-Olivan LM, Pérez-Coyotl I, Mendoza-Monroy DJ, Arrazola-Morgain RE (2016) Oxidative stress and genotoxicity induced by ketorolac on the common carp Cyprinus carpio. Environ Toxicol 31:1035–1043CrossRefGoogle Scholar
  11. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee SEATM, Ritsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65CrossRefGoogle Scholar
  12. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Vieyra-Reyes P, García-Medina S, Razo-Estrada C, Dublán-García O, Corral-Avitia AY (2012) Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on hyalella azteca. Water Air Soil Pollut 223:5097–5104CrossRefGoogle Scholar
  13. Gómez-Oliván LM, Neri-Cruz N, Galar-Martínez M, Islas-Flores H, García-Medina S (2014) Binary mixtures of diclofenac with paracetamol, ibuprofen, naproxen, and acetylsalicylic acid and these pharmaceuticals in isolated form induce oxidative stress on Hyalella azteca. Environ Monit Assess 186:7259–7271CrossRefGoogle Scholar
  14. Harmon RS, Remus J, McMillan NJ, McManus C, Collins L, Gottfried JL, DeLucia FC, Miziolek AW (2009) LIBS analysis of geomaterials: geochemical fingerprinting for the rapid analysis and discrimination of minerals. Appl Geochem 24:1125CrossRefGoogle Scholar
  15. Islas-Flores H, Manuel Gómez-Oliván L, Galar-Martínez M, Michelle Sánchez-Ocampo E, SanJuan-Reyes N, Ortíz-Reynoso M, Dublán-García O (2017) Cyto-genotoxicity and oxidative stress in common carp (Cyprinus carpio) exposed to a mixture of ibuprofen and diclofenac. Environ Toxicol 32:1637–1650CrossRefGoogle Scholar
  16. Jiang Z-Y, Hunt JV, Wolff SP (1992) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389CrossRefGoogle Scholar
  17. Jolibois B, Guerbet M (2005) Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat Res – Genet Toxicol Environ Mutagen 565:151–162CrossRefGoogle Scholar
  18. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Ind 8:1–13Google Scholar
  19. Levine RL, Williams JA, Stadtman EP, Shacter E (1994) [37] Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefGoogle Scholar
  20. Lucero GMA, Marcela GM, Sandra GM, Manuel GOL, Celene RE (2015) Naproxen-enriched artificial sediment induces oxidative stress and genotoxicity in Hyalella azteca. Water Air Soil Pollut 226:195CrossRefGoogle Scholar
  21. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175PubMedGoogle Scholar
  22. Morachis-Valdez G, Dublán-García O, López-Martínez LX, Galar-Martínez M, Saucedo-Vence K, Gómez-Oliván LM (2015) Chronic exposure to pollutants in Madín Reservoir (Mexico) alters oxidative stress status and flesh quality in the common carp Cyprinus carpio. Environ Sci Pollut Res 22:9159–9172CrossRefGoogle Scholar
  23. Olvera-Néstor CG, Morales-Avila E, Gómez-Olivan LM, Galár-Martínez M, García-Medina S, Neri-Cruz N (2016) Biomarkers of cytotoxic, genotoxic and apoptotic effects in Cyprinus carpio exposed to complex mixture of contaminants from hospital effluents. Bull Environ Contam Toxicol 96:326–332CrossRefGoogle Scholar
  24. Orozco-Hernández L, Gutiérrez-Gómez AA, SanJuan-Reyes N, Islas-Flores H, García-Medina S, Galar-Martínez M, Dublán-García O, Natividad R, Gómez-Oliván LM (2018) 17Β-Estradiol induces cyto-genotoxicity on blood cells of common carp (Cyprinus carpio). Chemosphere 191:118–127CrossRefGoogle Scholar
  25. Oviedo-Gómez DGC, Galar-Martínez M, García-Medina S, Razo-Estrada C, Gómez-Oliván LM (2010) Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environ Toxicol Pharmacol 29:39–43CrossRefGoogle Scholar
  26. Parvez S, Raisuddin S (2005) Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol 20:112–117CrossRefGoogle Scholar
  27. Pennak RW (1978) Freshwater invertebrates of the United Sates. 2nd edn. Wiley, New YorkGoogle Scholar
  28. Pépin J-M (2006) Impacts Écotoxicologiques De Certains Médicaments Dans L’Environnement:77. doi:http://hdl.handle.net/11143/7379
  29. Pérez-Alvarez I, Islas-Flores H, Gómez-Oliván LM, Barceló D, López De Alda M, Pérez Solsona S, Sánchez-Aceves L, SanJuan-Reyes N, Galar-Martínez M (2018) Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact. Environ Pollut 240:330–341CrossRefGoogle Scholar
  30. Perez-Coyotl I, Martinez-Vieyra C, Galar-Martinez M, Gomez-Olivan LM, Garcia-Medina S, Islas-Flores H, Perez-Pasten Borja R, Gasca-Perez E, Novoa-Luna KA, Dublan-Garcia O (2017) DNA damage and cytotoxicity induced on common carp by pollutants in water from an urban reservoir. Madin reservoir, a case study. Chemosphere 185:789–797CrossRefGoogle Scholar
  31. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC – Trends Anal Chem 22:685–696CrossRefGoogle Scholar
  32. Postma JF, De Valk S, Dubbeldam M, Maas JL, Tonkes M, Schipper CA, Kater BJ (2002) Confounding factors in bioassays with freshwater and marine organisms. Ecotoxicol Environ Saf 53:226–237CrossRefGoogle Scholar
  33. Radi R, Turrens JF, Chang LY, Bush KM, Crapo JD, Freeman BA (1991) Detection of catalase in rat heart mitochondria. J Biol Chem 266:22028–22034PubMedGoogle Scholar
  34. Richardson SD (2009) Water analysis: emerging contaminants and current issues. Anal Chem 81:4645–4677CrossRefGoogle Scholar
  35. SanJuan-Reyes N, Gómez-Oliván LM, Galar-Martínez M, García-Medina S, Islas-Flores H, González-González ED, Cardoso-Vera JD, Jiménez-Vargas JM (2015) NSAID-manufacturing plant effluent induces geno- and cytotoxicity in common carp (Cyprinus carpio). Sci Total Environ 530–531:1–10CrossRefGoogle Scholar
  36. Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM (2015) Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. Ecotoxicology 24:527–539CrossRefGoogle Scholar
  37. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149CrossRefGoogle Scholar
  38. Yen FL, Wu TH, Lin LT, Lin CC (2007) Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J Ethnopharmacol 111:123–128CrossRefGoogle Scholar
  39. Zounkova R, Kovalova L, Blaha L, Dott W (2010) Ecotoxicity and genotoxicity assessment of cytotoxic antineoplastic drugs and their metabolites. Chemosphere 81:253–260CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Leobardo Manuel Gómez-Oliván
    • 1
    Email author
  • Dora Alicia Solís-Casados
    • 2
  • Hariz Islas-Flores
    • 1
  • Nely San Juan-Reyes
    • 1
  1. 1.Laboratorio de Toxicología Ambiental, Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMTolucaMexico

Personalised recommendations