Advertisement

The State of Synthetic Biology Scholarship: A Case Study of Comparative Metrics and Citation Analysis

  • Jeffrey C. CeganEmail author
Chapter
Part of the Risk, Systems and Decisions book series (RSD)

Abstract

This chapter explores the current state of synthetic biology by applying a network/connectivity analysis to publications within the field in order to better understand the different disciplines and actors evaluating synthetic biology and where they are headed. Seven hundred twelve publications were identified through the Web of Science database, and a citation network was built through a text mining process in R. Each publication is classified based on its community of practice as either a (1) state of science, (2) products, (3) risk, (4) governance, or (5) ethical, legal, and social implications (ELSI), and interrelationships were identified across each community of practice. Then, centrality measures of indegree, outdegree, betweenness, and eigencentrality were calculated to show important and seminal nodes. Finally, the centrality measures were analyzed over time to determine critical publications within the citation network. The results show that state of science has the largest share of cited publications within each community of practice. Also, the network’s indegree centrality is highly correlated with eigencentrality, indicating that the most cited publications are also the ones that are connected to other highly cited publications. Furthermore, this chapter demonstrates that text mining is an applicable tool to extract references from publications, construct a citation network, and understand the structure of an emerging body of literature.

Keywords

Synthetic biology Citation network Text mining 

References

  1. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130–1134.Google Scholar
  2. Bates, M. E., Grieger, K. D., Trump, B. D., Keisler, J. M., Plourde, K. J., & Linkov, I. (2015). Emerging technologies for environmental remediation: Integrating data and judgment. Environmental Science & Technology, 50(1), 349–358.CrossRefGoogle Scholar
  3. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113–120.CrossRefGoogle Scholar
  4. Bradley, R. W., Buck, M., & Wang, B. (2016). Tools and principles for microbial gene circuit engineering. Journal of Molecular Biology, 428(5), 862–888.CrossRefGoogle Scholar
  5. Brophy, J. A. N., & Voigt, C. A. (2014). Principles of genetic circuit design. Nature Methods, 11(5), 508–520.CrossRefGoogle Scholar
  6. Cameron, D. E., Bashor, C. J., & Collins, J. J. (2014). A brief history of synthetic biology. Nature Reviews Microbiology, 12(5), 381–390.CrossRefGoogle Scholar
  7. Carr, P. A., & Church, G. M. (2009). Genome engineering. Nature Biotechnology, 27(12), 1151–1162.CrossRefGoogle Scholar
  8. Church, G. M., & Regis, E. (2014). Regenesis: How synthetic biology will reinvent nature and ourselves. Basic Books.Google Scholar
  9. Church, G. M., Elowitz, M. B., Smolke, C. D., Voigt, C. A., & Weiss, R. (2014). Realizing the potential of synthetic biology. Nature Reviews Molecular Cell Biology, 15(4), 289–294.CrossRefGoogle Scholar
  10. Cummings, C. L., & Kuzma, J. (2017). Societal risk evaluation scheme (SRES): Scenario-based multi-criteria evaluation of synthetic biology applications. PLoS One, 12(1), e0168564.CrossRefGoogle Scholar
  11. De Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.CrossRefGoogle Scholar
  12. Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335–338.CrossRefGoogle Scholar
  13. Endy, D. (2005). Foundations for engineering biology. Nature, 438(7067), 449–453.CrossRefGoogle Scholar
  14. Finkel, A. M., Trump, B. D., Bowman, D., & Maynard, A. (2018). A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus. Environment Systems and Decisions, 38(2), 177–197.CrossRefGoogle Scholar
  15. Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339–342.CrossRefGoogle Scholar
  16. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through Association of Ideas. Science, 122(3159), 108–101.CrossRefGoogle Scholar
  17. Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56.CrossRefGoogle Scholar
  18. Guet, C. C., Elowitz, M. B., Hsing, W., & Leibler, S. (2002). Combinatorial synthesis of genetic networks. Science, 296(5572), 1466–1470.Google Scholar
  19. Hasty, J., Mcmillen, D., Isaacs, F., & Collins, J. J. (2001). Computational studies of gene regulatory networks: In numero molecular biology. Nature Reviews Genetics, 2(4), 268–279.CrossRefGoogle Scholar
  20. Hasty, J., Mcmillen, D., & Collins, J. J. (2002). Engineered gene circuits. Nature, 420(6912), 224–230.CrossRefGoogle Scholar
  21. Jacob, R., Harikrishnan, K. P., Misra, R., & Ambika, G. (2017). Measure for degree heterogeneity in complex networks and its application to recurrence network analysis. Royal Society Open Science, 4, 160757.  https://doi.org/10.1098/rsos.160757.MathSciNetCrossRefGoogle Scholar
  22. Kahl, L. J., & Endy, D. (2013). A survey of enabling technologies in synthetic biology. Journal of Biological Engineering, 7(1), 13.CrossRefGoogle Scholar
  23. Khalil, A. S., & Collins, J. J. (2010). Synthetic biology: Applications come of age. Nature Reviews Genetics, 11(5), 367–379.CrossRefGoogle Scholar
  24. Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinary of scientific journals. Journal of the American Society for Information Science and Technology, 58(9), 1303–1319.CrossRefGoogle Scholar
  25. Linkov, I., Trump, B. D., Wender, B. A., Seager, T. P., Kennedy, A. J., & Keisler, J. M. (2017). Integrate life-cycle assessment and risk analysis results, not methods. Nature Nanotechnology, 12(8), 740.CrossRefGoogle Scholar
  26. Linkov, I., Trump, B. D., Anklam, E., Berube, D., Boisseasu, P., Cummings, C., et al. (2018). Comparative, collaborative, and integrative risk governance for emerging technologies. Environment Systems and Decisions, 38(2), 170–176.CrossRefGoogle Scholar
  27. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences, 104(27), 11197–11202.CrossRefGoogle Scholar
  28. MacDonald, I. C., & Deans, T. L. (2016). Tools and applications in synthetic biology. Advanced Drug Delivery Reviews, 105, 20–34.CrossRefGoogle Scholar
  29. Malloy, T., Trump, B. D., & Linkov, I. (2016). Risk-based and prevention-based governance for emerging materials. Environmental Science and Technology., 50, 6822.CrossRefGoogle Scholar
  30. Marchant, G. E., Abbot, K. W., & Allenby, B. (Eds.). (2013). Innovative governance models for emerging technologies. Cheltenham: Edward Elgar Publishing.Google Scholar
  31. McPherson, M., Smith-Lovin, L., & Cook, J. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.CrossRefGoogle Scholar
  32. Merad, M., & Trump, B. D. (2019). Expertise under scrutiny: 21st century decision making for environmental health and safety. Cham: Springer International Publishing.  https://doi.org/10.1007/978-3-030-20532-4.CrossRefGoogle Scholar
  33. Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q.-A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P., & Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354–360.CrossRefGoogle Scholar
  34. Oldham, P., Hall, S., & Burton, G. (2012). Synthetic biology: Mapping the scientific landscape. PLoS One, 7(4), e34368.CrossRefGoogle Scholar
  35. Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 64(1), 34–50.Google Scholar
  36. Oye, K. A., Esvelt, K., Appleton, E., Catteruccia, F., Church, G., Kuiken, T., et al. (2014). Regulating gene drives. Science, 345(6197), 626–628.CrossRefGoogle Scholar
  37. Paddon, C. J., Westfall, P. J., Pitera, D. J., Benjamin, K., Fisher, K., McPhee, D., et al. (2013). High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496(7446), 528–532.CrossRefGoogle Scholar
  38. Raimbault, B., Cointet, J. P., & Joly, P. B. (2016). Mapping the emergence of synthetic biology. PLoS One, 11(9), e0161522.CrossRefGoogle Scholar
  39. Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., Chang, M. C. Y., Withers, S. T., Shiba, Y., Sarpong, R., & Keasling, J. D. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440(7086), 940–943.CrossRefGoogle Scholar
  40. Schmidt, M., Kelle, A., Ganguli-Mitra, A., & de Vriend, H. (Eds.). (2009). Synthetic biology: The technoscience and its societal consequences. Dordrecht: Springer Science and Business Media.Google Scholar
  41. Seager, T. P., Trump, B. D., Poinsatte-Jones, K., & Linkov, I. (2017). Why life cycle assessment does not work for synthetic biology. Environmental Science and Technology, 51, 5861.CrossRefGoogle Scholar
  42. Trosset, J.-Y., & Carbonell, P. (2015). Synthetic biology for pharmaceutical drug discovery. Drug Design, Development and Therapy, 9, 6285.CrossRefGoogle Scholar
  43. Trump, B. (2016). A comparative analysis of variations in synthetic biology regulation. University of Michigan.Google Scholar
  44. Trump, B. D. (2017). Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore. Health Policy, 121(11), 1139–1146.CrossRefGoogle Scholar
  45. Trump, B., Cummings, C., Kuzma, J., & Linkov, I. (2017). A decision analytic model to guide early-stage government regulatory action: Applications for synthetic biology. Regulation and Governance.Google Scholar
  46. Trump, B. D., Cegan, J., Wells, E., Keisler, J., & Linkov, I. (2018a). A critical juncture for for synthetic biology. EMBO Reports., 19(7), e46153.CrossRefGoogle Scholar
  47. Trump, B. D., Foran, C., Rycroft, T., Wood, M. D., Bandolin, N., Cains, M., et al. (2018b). Development of community of practice to support quantitative risk assessment for synthetic biology products: Contaminant bioremediation and invasive carp control as cases. Environment Systems and Decisions, 38(4), 517–527.CrossRefGoogle Scholar
  48. Trump, B. D., Cegan, J., Wells, E., Poinsatte-Jones, K., Rycroft, T., Martin, D., Warner, C., Perkins, E., Warner, C., Wood, M., & Linkov, I. (2019). Co-evolution of physical and social sciences in synthetic biology. Critical Reviews in Biotechnology, 39, 351.CrossRefGoogle Scholar
  49. Tucker, J. B., & Zilinskas, R. A. (2006). The promise and perils of synthetic biology. The New Atlantis, 12, 25–45.Google Scholar
  50. Weisstein, E. W. (2017) Outdegree. From MathWorld – A Wolfram Web Resource.Google Scholar
  51. Xie, M., & Fussenegger, M. (2015). Mammalian designer cells: Engineering principles and biomedical applications. Biotechnology Journal, 10(7), 1005–1018.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Environmental Laboratory, Engineer Research and Development CenterUS Army Corps of EngineersWashington, DCUSA

Personalised recommendations