Highlights on the Risk Governance for Key Enabling Technologies: From Risk Denial to Ethics

  • Myriam MeradEmail author
Part of the Risk, Systems and Decisions book series (RSD)


Discovering new processes, investing in new products, expanding into new markets, innovating, and differentiating are all about taking risks. Although risk-taking and scientific advancement are at the heart of technology development and commercialization, other social and humanitarian factors are also critical to the success or failure of a technology’s widespread adoption and use. Notably, this includes consideration of ethical, legal, and social implications (ELSI) that frame a technology in terms of its normative societal value – not just by its technical capabilities (Calvert & Martin 2009).


  1. Abbott, A. (2001). On the concept of turning point. Chapter 8. In Time matters - on theory and method (pp. 240–260). Chicago: The University of Chicago Press Books.Google Scholar
  2. Allhoff, F., Lin, P., Moor, J. A. H., Weckert, J., & Roco, M. C. (2007). Nanoethics: The ethical and social implications of nanotechnology (p. 416). Hoboken: Wiley-Interscience. ISBN: 978–0–470-08417-5.Google Scholar
  3. Calvert, J., & Martin, P. (2009). The role of social scientists in synthetic biology. EMBO Reports, 10(3), 201–204.CrossRefGoogle Scholar
  4. Chateauraynaud, F. (2011). Argumenter dans un champ de forces. essai de balistique sociologique (p. 477). Paris: Editions Petra, coll. « Pragmatismes », ISBN: 9782847430394.Google Scholar
  5. Collins J. (2001). From good to great: Why some companies make the leap... And others Don't. ISBN: 978-0-06-662099-2. William Collins editor. pp. 320.Google Scholar
  6. Collins, J. (2009). How the mighty fall: And why some companies never give in. ISBN: 9780977326419 (p. 240). London: Random House Audio Books.Google Scholar
  7. Dechy N., Dien Y., Llory M. (2010). Pour une culture des accidents au service de la sécurité industrielle. Maîtrise des Risques et de Sécurité de Fonctionnement, Lambda-Mu 17 conference, Oct 2010:
  8. Douglas, C. M., & Stemerding, D. (2014). Challenges for the European governance of synthetic biology for human health. Life Sciences, Society and Policy, 10(1), 6.CrossRefGoogle Scholar
  9. Dupuy, J.-P. (2007). Some pitfalls in the philosophical foundations of nanoethics. Journal of Medicine and Philosophy, 32, 237–261, 2007.CrossRefGoogle Scholar
  10. Farrelly C. (2007). Deliberative democracy and nanotechnology. in Allhoff F., Lin P., Moor JA. H., Weckert J., Roco M. C. Nanoethics: The ethical and social implications of nanotechnology. Hoboken: Wiley-Interscience 416. ISBN: 978-0-470-08417-5.Google Scholar
  11. Finkel, A. M., Trump, B. D., Bowman, D., & Maynard, A. (2018). A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus. Environment systems and decisions, 38(2), 177–197.CrossRefGoogle Scholar
  12. Goldthorpe, J. (1997). Current issues in comparative macrosociology. Social Comparative Research, 16, 1–26.Google Scholar
  13. Greer, S. L., & Trump, B. (2019). Regulation and regime: the comparative politics of adaptive regulation in synthetic biology. Policy Sciences, 1–20.Google Scholar
  14. Heffernan, M. (2011). Willful blindness: Why we ignore the obvious (p. 304). New York: Walker & Company.Google Scholar
  15. Hoofnagle M. (2009).Climate change deniers: Failsafe tips on how to post them. The Guardian.
  16. Kuzma, J. (2015). Translational governance research for synthetic biology. Journal of Responsible Innovation, 2(1), 109–112.CrossRefGoogle Scholar
  17. Linkov, I., Trump, B. D., Anklam, E., Berube, D., Boisseasu, P., Cummings, C., et al. (2018). Comparative, collaborative, and integrative risk governance for emerging technologies. Environment Systems and Decisions, 38(2), 170–176.CrossRefGoogle Scholar
  18. Malloy, T., Trump, B. D., & Linkov, I. (2016). Risk-based and prevention-based governance for emerging materials. Environmental Science & Technology., 50, 6822.CrossRefGoogle Scholar
  19. Merad, M., & Trump, B. D. (2020). Expertise under scrutiny: 21st century decision making for environmental health and safety. Cham: Springer International Publishing. Scholar
  20. Merad, M., & Trump, B. (2018). The legitimacy principle within French risk public policy: A reflective contribution to policy analytics. Science of the Total Environment, 645, 1309–1322. Scholar
  21. Merad M., Dechy N., Dehouck L., Lassagne M. (2016). Risques majeurs, incertitudes et decisions – Approche pluridisciplinaire et multisectorielle. Ma edition. ISBN: 9782822404303.Google Scholar
  22. Merad, M., & Carriot, P. (2015). Evaluer la concertation dans le domaine des risqué et de l’environnement- Eléments méthodologiques- Livre Blanc. Paris: Afite, le réseau d'experts pour l'environnement, DL. ISBN: 978-2-9545398-2-9.Google Scholar
  23. Merad M., Carriot P. (2013). Médiation et concertation environnementales - Un accompagnement à la pratique. Collection « Références »- Editions AFITE. ISBN: 978-2-9545398-0-5.Google Scholar
  24. Merad M. (2013). Organisations hautement durables: Gouvernance, risques et critères d'apprentissage Editions Lavoisier. ISBN: 978-2-7430-1535-0.Google Scholar
  25. Palma-Oliveira, J. M., Trump, B. D., Wood, M. D., & Linkov, I. (2018). Community-driven hypothesis testing: A solution for the tragedy of the anticommons. Risk Analysis, 38(3), 620–634.CrossRefGoogle Scholar
  26. Rabelais. (1532). Pantagruel.Google Scholar
  27. Schmidt, M. (2008). Diffusion of synthetic biology: A challenge to biosafety. Systems and Synthetic Biology, 2(1–2), 1–6.CrossRefGoogle Scholar
  28. Thaler, R., & Sunstein, C. (2008). Nudge: Improving decisions about health, wealth, and happiness (p. 312). New Haven: Yale Press.Google Scholar
  29. Torgersen, H. (2009). Synthetic biology in society: Learning from past experience? Systems and Synthetic Biology, 3(1–4), 9.CrossRefGoogle Scholar
  30. Trump, B. D., Cegan, J., Wells, E., Poinsatte-Jones, K., Rycroft, T., Warner, C., et al. (2019). Co-evolution of physical and social sciences in synthetic biology. Critical Reviews in Biotechnology, 39(3), 351–365.CrossRefGoogle Scholar
  31. Trump, B. D., Foran, C., Rycroft, T., Wood, M. D., Bandolin, N., Cains, M., et al. (2018a). Development of community of practice to support quantitative risk assessment for synthetic biology products: Contaminant bioremediation and invasive carp control as cases. Environment Systems and Decisions, 38(4), 517–527.CrossRefGoogle Scholar
  32. Trump, B. D., Cegan, J. C., Wells, E., Keisler, J., & Linkov, I. (2018b). A critical juncture for synthetic biology: Lessons from nanotechnology could inform public discourse and further development of synthetic biology. EMBO Reports, 19(7), e46153.CrossRefGoogle Scholar
  33. Trump, B. D. (2017). Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore. Health Policy, 121(11), 1139–1146.CrossRefGoogle Scholar
  34. Tucker, J. B., & Zilinskas, R. A. (2006). The promise and perils of synthetic biology. The New Atlantis, 12, 25–45.Google Scholar
  35. Vincent, B. B. (2013). Ethical perspectives on synthetic biology. Biological Theory, 8(4), 368–375.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CNRSParisFrance
  2. 2.UMR ESPACE (Université de Nice)NiceFrance
  3. 3.UMR LAMSADE (Université Paris-Dauphine) –PSLParisFrance

Personalised recommendations