A Solution-Focused Comparative Risk Assessment of Conventional and Emerging Synthetic Biology Technologies for Fuel Ethanol

  • Emily WellsEmail author
  • Benjamin D. Trump
  • Adam M. Finkel
  • Igor Linkov
Part of the Risk, Systems and Decisions book series (RSD)


Global energy demand is increasing due to global development initiatives and steady population growth. The US Energy Information Administration’s International Energy Outlook 2017 (IEO 2017) projects that the world energy consumption will raise from approximately 575 quadrillion Btu in 2015 to 736 Btu by 2040—an increase of 28% (IEO 2017). Fossil fuels, such as petroleum and natural gas, serve as the leading energy sources for various sectors, such as transportation. However, the International Energy Agency (IEA) forecasts that biofuel production will increase by 15% over the next 5 years to reach approximately 42.6 billion gallons (IEA 2018). Various types of renewable fuels or fossil fuel additives are being researched and developed as complements or supplements to fossil fuels. Ethanol, or ethyl alcohol, is one such additive, particularly for motor fuel in the United States and Brazil. Fuel ethanol has been proprosed to offset dependence on petroleum, thereby reducing greenhouse gas emissions by up to 43% relative to gasoline (Flugge et al. 2017). Additionally, as advanced ethanol production processes are less sensitive to the vagaries of geography, as will be discussed later in this chapter, countries can produce it domestically rather than having to rely on the geopolitics associated with the world petroleum market.



Partial funding for this project was generously provided by a grant from the Alfred P. Sloan Foundation.


  1. Adusumilli, N. C., Rister, M. E., Lacewell, R. D., Lee, T., & Blumenthal, J. (2013). Mitigating externalities related to land use change for biomass production for energy in the Tres-Palacios river watershed of Texas.Google Scholar
  2. Agler, M. T., Garcia, M. L., Lee, E. S., Schlicher, M., & Angenent, L. T. (2008). Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol. Environmental Science & Technology, 42(17), 6723–6729.CrossRefGoogle Scholar
  3. Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., et al. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647.CrossRefGoogle Scholar
  4. Algenol. (2017). Algenol integrated pilot-scale biorefinery: January 29,1010 – July 1, 2015 public version final report. Available online at:
  5. Alper, H., & Stephanopoulos, G. (2009). Engineering for biofuels: Exploiting innate microbial capacity or importing biosynthetic potential? Nature Reviews Microbiology, 7(10), 715–723.CrossRefGoogle Scholar
  6. Alternative Fuels Data Center. (Retrieved 2017). Ethanol production and distribution. US Department of Energy. Retrieved from:
  7. Amigun, B., Petrie, D., & Görgens, J. (2011). Economic risk assessment of advanced process technologies for bioethanol production in South Africa: Monte Carlo analysis. Renewable Energy, 36(11), 3178–3186.CrossRefGoogle Scholar
  8. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451(7174), 86–89.CrossRefGoogle Scholar
  9. Babcock, B. A. (2012). The impact of US biofuel policies on agricultural price levels and volatility. China Agricultural Economic Review, 4(4), 407–426.CrossRefGoogle Scholar
  10. Bastos, M. B. (2007). Brazil’s ethanol program-an insider’s view. Energy Tribune, 20.Google Scholar
  11. Bergtold, J. S., Sant’Anna, A. C., Miller, N., Ramsey, S., & Fewell, J. E. (2016). Water Scarcity and Conservation Along the Biofuel Supply Chain in the United States: From Farm to Refinery. In Competition for Water Resources: Experiences and Management Approaches in the US and Europe (p. 124). Amsterdam: Elsevier.Google Scholar
  12. Bioenergy Technologies Office. (2016). National algal biofuels technology review. Department of Energy. Retrieved from
  13. Börjesson, P. (2009). Good or bad bioethanol from a greenhouse gas perspective–what determines this? Applied Energy, 86(5), 589–594.CrossRefGoogle Scholar
  14. Borowitzka, M. A. (2013). Energy from microalgae: A short history. Algae for Biofuels and Energy, 5, 1–15.Google Scholar
  15. Bourne, J. K., & Clark, R. (2007). Biofuels: Boon or Boondoggle? Producing fuel from corn and other crops could be good for the planet-if only the process didn’t take a significant environmental toll. New breakthroughs could make a difference. National Geographic, 212(4), 38.Google Scholar
  16. Brentner, L. B., Eckelman, M. J., & Zimmerman, J. B. (2011). Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environmental science & technology, 45(16), 7060–7067.Google Scholar
  17. British Petroleum. (2016). BP statistical review for world energy June 2016. Available online at:
  18. Burlew, J. S. (1953). Algae culture: From laboratory to pilot plant (pp. 1–357). Washington, DC: Carnegie Institution of Washington.Google Scholar
  19. Campbell, J. E., et al. (2008). The global potential of bioenergy on abandoned agriculture lands. Environmental Science & Technology, 42(15), 5791–5794.CrossRefGoogle Scholar
  20. Cardinale, S., & Arkin, A. P. (2012). Contextualizing context for synthetic biology–identifying causes of failure of synthetic biological systems. Biotechnology Journal, 7(7), 856–866.Google Scholar
  21. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  22. Connor, M. R., & Atsumi, S. (2010). Synthetic biology guides biofuel production. BioMed Research International, 2010.Google Scholar
  23. Da Rosa, A. V. (2012). Fundamentals of renewable energy processes. Academic Press.Google Scholar
  24. de Saussure, T. (1807). Mémoire sur la composition de l'alcohol et de l'éther sulfurique. Journal de physique, de chimie, d'histoire naturelle et des arts, 64, 316–354.Google Scholar
  25. Darzins, A., Pienkos, P., & Edye, L. (2010). Current status and potential for algal biofuels production. A report to IEA Bioenergy Task, 39(13), 403–412.Google Scholar
  26. Demirbaş, A. (2002). Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources, 24(9), 835–841.CrossRefGoogle Scholar
  27. Dias De Oliveira, M. E., Vaughan, B. E., & Rykiel, E. J. (2005). Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. AIBS Bulletin, 55(7), 593–602.Google Scholar
  28. DiPardo, J. (2000). Outlook for biomass ethanol production and demand. Available online at: Accessed July 2007.
  29. Ellis, J. T., Hengge, N. N., Sims, R. C., & Miller, C. D. (2012). Acetone, butanol, and ethanol production from wastewater algae. Bioresource technology, 111, 491–495.CrossRefGoogle Scholar
  30. Environmental Protection Agency. (2007). Greenhouse gas impacts of expanded renewable and alternative fuels use. Washington, DC: United States Environmental Protection Agency. EPA420-F-07-035.Google Scholar
  31. Finkel, A. M. (2011). Solution-focused risk assessment: A proposal for the fusion of environmental analysis and action. Human and Ecological Risk Assessment, 17(4), 754–787. (and 5 concurrent responses/commentaries, pp. 788–812).CrossRefGoogle Scholar
  32. Finkel, A. M., Trump, B. D., Bowman, D., & Maynard, A. (2018). A “solution-focused” comparative risk assessment of conventional and synthetic biology approaches to control mosquitoes carrying the dengue fever virus. Environment Systems and Decisions, 38(2), 177–197.CrossRefGoogle Scholar
  33. Flugge, M., J. Lewandrowski, J. Rosenfeld, C. Boland, T. Hendrickson, K. Jaglo, S. Kolansky, K. Moffroid, M. Riley-Gilbert, and D. Pape. (2017). A life-cycle analysis of the greenhouse gas emissions of corn-based ethanol. Report prepared by ICF under USDA Contract No. AG-3142-D-16-0243.Google Scholar
  34. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., et al. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Applied and Environmental Microbiology, 68(10), 5136–5141.CrossRefGoogle Scholar
  35. Georgianna, D. R., & Mayfield, S. P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335.CrossRefGoogle Scholar
  36. Gimpel, J. A., Specht, E. A., Georgianna, D. R., & Mayfield, S. P. (2013). Advances in microalgae engineering and synthetic biology applications for biofuel production. Current Opinion in Chemical Biology, 17(3), 489–495.Google Scholar
  37. Global Carbon Project. (2018). Global Carbon Budget. Retrieved from
  38. Goldemberg, J. (2008). The Brazilian biofuels industry. Biotechnology for Biofuels, 1(6), 4096. Scholar
  39. Granco, G., Sant’Anna, A. C., Bergtold, J. S., & Caldas, M. M. (2015). Ethanol plant location decision in the Brazilian cerrado. State of the Art on Energy Developments, 11, 31.Google Scholar
  40. Greer, S. L., & Trump, B. (2019). Regulation and regime: the comparative politics of adaptive regulation in synthetic biology. Policy Sciences, 1–20.Google Scholar
  41. Harder, R., & von Witsch, H. (1942). Bericht über Versuche zur Fettsynthese mittels autotropher Mikroorganismen. Forschungsdienst Sonderheft, 16, 270–275.Google Scholar
  42. Henley, W. J., Litaker, R. W., Novoveská, L., Duke, C. S., Quemada, H. D., & Sayre, R. T. (2013). Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Research, 2(1), 66–77.CrossRefGoogle Scholar
  43. Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences, 103(30), 11206–11210.CrossRefGoogle Scholar
  44. Inderwildi, O. R., & King, D. A. (2009). Quo vadis biofuels? Energy and Environmental Science, 2(4), 343–346.CrossRefGoogle Scholar
  45. International Energy Agency. (2018). United States – 2018 update. Available online at:
  46. Jolly, L. (2001). The commercial viability of fuel ethanol from sugar cane. International Sugar Journal, 103(1227), 117–143.Google Scholar
  47. Junqueira, R. D. (2017). Ideologia de gênero”: a gênese de uma categoria política reacionária–ou: a promoção dos direitos humanos se tornou uma “ameaça à família natural”. Debates contemporâneos sobre educação para a sexualidade, 25-52.Google Scholar
  48. Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2012). Design and planning of infrastructures for bioethanol and sugar production under demand uncertainty. Chemical Engineering Research and Design, 90(3), 359–376.CrossRefGoogle Scholar
  49. Kovarik, W. (2008). Ethanol’s first century. In XVI International Symposium on Alcohol Fuels: Radford University.Google Scholar
  50. Kumar, S., Singh, N., & Prasad, R. (2010). Anhydrous ethanol: A renewable source of energy. Renewable and Sustainable Energy Reviews, 14(7), 1830–1844.CrossRefGoogle Scholar
  51. Landis, M. J., Matzke, N. J., Moore, B. R., & Huelsenbeck, J. P. (2013). Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62(6), 789–804.CrossRefGoogle Scholar
  52. Linkov, I., Trump, B. D., Anklam, E., Berube, D., Boisseasu, P., Cummings, C., et al. (2018). Comparative, collaborative, and integrative risk governance for emerging technologies. Environment Systems and Decisions, 38(2), 170–176.Google Scholar
  53. Lovins A. B. (2005). Winning the oil endgame, p. 105.Google Scholar
  54. Lynd, L. R., Cushman, J. H., Nichols, R. J., & Wyman, C. E. (1991). Fuel ethanol from cellulosic biomass. Science, 251(4999), 1318–1323.CrossRefGoogle Scholar
  55. Macedo, I. D. C. (1998). Greenhouse gas emissions and energy balances in bio-ethanol production and utilization in Brazil (1996). Biomass and Bioenergy, 14(1), 77–82.CrossRefGoogle Scholar
  56. Malloy, T., Trump, B. D., & Linkov, I. (2016). Risk-based and prevention-based governance for emerging materials. Environmental Science and Technology, 50, 6822–6824.CrossRefGoogle Scholar
  57. Martín, M., & Grossmann, I. E. (2013). Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AIChE Journal, 59(8), 2872–2883.Google Scholar
  58. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.Google Scholar
  59. McLaughlin, W., Conrad, A., Rister, M. E., Lacewell, R. D., Falconer, L. L., Blumenthal, J. M., et al. (2011). The economic and financial implications of supplying a bioenergy conversion facility with cellulosic biomass feedstocks (No. 1371-2016-108871).Google Scholar
  60. Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., et al. (2013). Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences, 110, 6448–6452.CrossRefGoogle Scholar
  61. Moraes, M. A. F. D., Oliveira, F. C. R., & Diaz-Chavez, R. A. (2015). Socio-economic impacts of Brazilian sugarcane industry. Environmental Development, 16, 31–43.CrossRefGoogle Scholar
  62. Mukunda, G., Oye, K. A., & Mohr, S. C. (2009). What rough beast? Synthetic biology, uncertainty, and the future of biosecurity. Politics and the Life Sciences, 28(2), 2–26.Google Scholar
  63. Mumm, R. H., Goldsmith, P. D., Rausch, K. D., & Stein, H. H. (2014). Land usage attributed to corn ethanol production in the United States: Sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization. Biotechnology for Biofuels, 7(1), 61.CrossRefGoogle Scholar
  64. Murphy, J. D., & Power, N. M. (2008). How can we improve the energy balance of ethanol production from wheat? Fuel, 87(10), 1799–1806.CrossRefGoogle Scholar
  65. National Academy of Sciences and National Research Council. (2012). Biosecurity challenges of the global expansion of high-containment biological laboratories: Summary of a workshop. Washington, DC: The National Academies Press.
  66. National Research Council. (2004). Biotechnology Research in an Age of Terrorism. Washington, DC: The National Academies Press.
  67. Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320–328.CrossRefGoogle Scholar
  68. Pienkos, P. T., & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining, 3(4), 431.CrossRefGoogle Scholar
  69. Pimentel, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76.CrossRefGoogle Scholar
  70. Pollack, A. (2011). US approves corn modified for ethanol. The New York Times (February 11, B1).Google Scholar
  71. Rakkiyappan, P., Shekinah, D. E., Gopalasundaram, P., Mathew, M. D., & Asokan, S. (2009). Post-harvest deterioration of sugarcane with special reference to quality loss. Sugar Tech, 11(2), 167–170.CrossRefGoogle Scholar
  72. Renewable Fuels Association. (2011). Global ethanol production to reach 88.7 billion litres in 2011.Google Scholar
  73. Renewable Fuels Association. (2012). Accelerating Industry Innovation – 2012 Ethanol Industry Outlook. Washington, DC: Renewable Fuels Association.Google Scholar
  74. Renewable Fuels Association. (2016a). Fueling a high octane future. Retrieved from:
  75. Renewable Fuels Association. (2016b). Re-examining corn ethanol’s energy balance ratio. Retrieved from:
  76. Renewable Fuels Association. (2016c). Global ethanol production. Available online at:
  77. Roach, J. (July 18, 2005). 9,000-year-old beer re-created from Chinese recipe. National Geographic News.Google Scholar
  78. Robertson, G. P., et al. (2017). Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Science, 356, 1349.CrossRefGoogle Scholar
  79. Rosenthal, E. (2008). Biofuels deemed a greenhouse threat. New York Times, 8.Google Scholar
  80. Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., et al. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739–1758.CrossRefGoogle Scholar
  81. Sanford, G. R., Oates, L. G., Roley, S. S., Duncan, D. S., Jackson, R. D., Robertson, G. P., & Thelen, K. D. (2017). Biomass production a stronger driver of cellulosic ethanol yield than biomass quality. Agronomy Journal, 109(5), 1911-1922.Google Scholar
  82. Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences, 105(2), 464–469.CrossRefGoogle Scholar
  83. Schmidt, M., Ganguli-Mitra, A., Torgersen, H., Kelle, A., Deplazes, A., & Biller-Andorno, N. (2009). A priority paper for the societal and ethical aspects of synthetic biology. Systems and synthetic biology, 3(1-4), 3.Google Scholar
  84. Seager, T. P., Trump, B. D., Poinsatte-Jones, K., & Linkov, I. (2017). Why life cycle assessment does not work for synthetic biology. Environmental Science & Technology, 51, 5861–5862.CrossRefGoogle Scholar
  85. Segall, S. D., & Artz, W. E. (2007). The Brazilian experience with biofuels. Lipid Technology, 19(1), 12-15.Google Scholar
  86. Shahrukh, H., Oyedun, A. O., Kumar, A., Ghiasi, B., Kumar, L., & Sokhansanj, S. (2016). Comparative net energy ratio analysis of pellet produced from steam pretreated biomass from agricultural residues and energy crops. Biomass and Bioenergy, 90, 50–59.CrossRefGoogle Scholar
  87. Shapouri, H., Duffield, J. A., & Wang, M. (2002). The energy balance of corn ethanol: an update. Washington, DC: EERE Publication and Product Library.CrossRefGoogle Scholar
  88. Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. Golden: National Renewable Energy Laboratory.CrossRefGoogle Scholar
  89. Shen, J., & Luo, W. (2011). Effects of monosulfuron on growth, photosynthesis, and nitrogenase activity of three nitrogen-fixing cyanobacteria. Archives of Environmental Contamination and Toxicology, 60(1), 34-43.Google Scholar
  90. Solomon, B. D., Barnes, J. R., & Halvorsen, K. E. (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31(6), 416–425.CrossRefGoogle Scholar
  91. Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science, 315(5813), 801–804.CrossRefGoogle Scholar
  92. Tenerelli, P., & Carver, S. (2012). Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modelling. Applied Geography, 32(2), 724-736.Google Scholar
  93. Trump, B. D. (2017). Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore. Health Policy, 121(11), 1139–1146.CrossRefGoogle Scholar
  94. Trump, B. D., Foran, C., Rycroft, T., Wood, M. D., Bandolin, N., Cains, M., et al. (2018). Development of community of practice to support quantitative risk assessment for synthetic biology products: Contaminant bioremediation and invasive carp control as cases. Environment Systems and Decisions, 38(4), 517–527.CrossRefGoogle Scholar
  95. Trump, B. D., Cegan, J., Wells, E., Poinsatte-Jones, K., Rycroft, T., Warner, C., et al. (2019). Co-evolution of physical and social sciences in synthetic biology. Critical Reviews in Biotechnology, 39(3), 351–365.CrossRefGoogle Scholar
  96. Tyner, W. E. (2008). The US ethanol and biofuels boom: Its origins, current status, and future prospects. Bioscience, 58(7), 646–653.CrossRefGoogle Scholar
  97. Urbanchuk, J. (2017). Contribution of the ethanol industry to the economy of the United States in 2016. Available online at:
  98. U.S. Department of Agriculture. (2006). Economic feasibility of ethanol production from sugar in the United States. Archived from the original on 2007-08-15.Google Scholar
  99. U.S. Department of Agriculture. Economic Research Service. (2017). US bioenergy statistics. Retrieved from:
  100. U.S. Department of Energy. (2007). Biofuels: bringing biological solutions to energy challenges. Available online at:
  101. U.S. Department of Energy. (2015). 2015 renewable energy data book. Energy Efficiency and Renewable Energy. Available online at:
  102. U.S. Department of Energy. (2017). Clean cities alternative fuel price report. Golden: Energy Efficiency and Renewable Energy. Retrieved from Scholar
  103. U.S. Energy Information Administration. (2016). US fuel ethanol production continues to grow in 2017. Retrieved from:
  104. U.S. Energy Information Administration. (2017a). EIA projects 28% increase in world energy use by 2040. US EIA, Today in Energy. Retrieved from:
  105. U.S. Energy Information Administration. (2017b). “Ethanol”. Alternative fuels data center. Retrieved from:
  106. U.S. Energy Information Administration. (2017c). International energy outlook 2017. Available online at:
  107. U.S. Environmental Protection Agency. (2007). EPA finalizes regulations for a renewable fuel standard (RFS) program for 2007 and beyond. Office of Transportation and Air Quality.Google Scholar
  108. U.S. Environmental Protection Agency. (2017). Global greenhouse gas emissions data. Retrieved from:
  109. U.S. Environmental Protection Agency. (2018). Inventory of U.S. greenhouse gas emissions and sinks. Available online at:
  110. UNICA. (2016). Sugarcane: One plant, many solutions. Sugar, ethanol, bioelectricity, and beyond. Retrieved from:
  111. Valdes, C. (2011). Can Brazil meet the world’s growing need for ethanol? Available online at:
  112. Van Devender, K. (2011). Grain drying concepts and options.Google Scholar
  113. Von Blottnitz, H., & Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. Journal of cleaner production, 15(7), 607–619.CrossRefGoogle Scholar
  114. Waltz, E. (2009). Cellulosic ethanol stimulus. Nature Biotechnology, 27(4), 304–304.CrossRefGoogle Scholar
  115. Wang, G. S., Yu, M. H., & Zhu, J. Y. (2011). Sulfite Pretreatment (SPORL) for Robust Enzymatic Saccharification of Corn Stalks. Advanced Materials Research, 236, 173–177. Trans Tech Publications.Google Scholar
  116. Wu, M., Mintz, M., Wang, M., & Arora, S. (2009). Consumptive water use in the production of ethanol and petroleum gasoline (No. ANL/ESD/09–1). Argonne: National Laboratory (ANL).CrossRefGoogle Scholar
  117. Zhu, M., Lü, F., Hao, L. P., He, P. J., & Shao, L. M. (2009). Regulating the hydrolysis of organic wastes by micro-aeration and effluent recirculation. Waste Management, 29(7), 2042–2050.Google Scholar
  118. Zhu, Y., Albrecht, K. O., Elliott, D. C., Hallen, R. T., & Jones, S. B. (2013). Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Research, 2(4), 455–464.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Emily Wells
    • 1
    • 2
    Email author
  • Benjamin D. Trump
    • 2
    • 3
  • Adam M. Finkel
    • 3
  • Igor Linkov
    • 1
    • 2
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.US Army Corps of EngineersWashington, DCUSA
  3. 3.University of MichiganAnn ArborUSA

Personalised recommendations