The Feathers of the Jurassic Urvogel Archaeopteryx

  • Nicholas R. LongrichEmail author
  • Helmut Tischlinger
  • Christian Foth
Part of the Fascinating Life Sciences book series (FLS)


The Jurassic stem bird Archaeopteryx is an iconic transitional fossil, with an intermediate morphology combining features of non-avian dinosaurs and crown Aves. Importantly, fossils of Archaeopteryx preserve not only the bones but also details of the plumage and therefore help shed light on the evolution of feathers, wings, and avian flight. Plumage is preserved in multiple individuals, allowing a detailed documentation of the feathers of the wings, tail, hindlimbs, and body. In some features, Archaeopteryx’ plumage is remarkably modern, yet in others, it is strikingly primitive. As in extant birds, remiges and coverts are enlarged and overlap to form airfoils. Remiges and rectrices exhibit asymmetrical, pennaceous vanes, with interlocking barbules. The hindlimbs bear large, vaned feathers as in Microraptor and Anchiornis. Rectrices are numerous and extend the full length of the tail to the hips. The plumage of crown Aves was assembled in a stepwise fashion from Anchiornis through Archaeopteryx, culminating in a modern arrangement in ornithothoracines. Subsequent stasis in feather and wing morphology likely reflects aerodynamic and developmental constraints. Feather morphology and arrangement in Archaeopteryx are consistent with lift-generating function, and the wing loading and aspect ratio are comparable to modern birds, consistent with gliding and perhaps flapping flight. The plumage of Archaeopteryx is intermediate between Anchiornis and more derived Pygostylia, suggesting a degree of flight ability intermediate between the two.



We are indebted to the curators and staff of the Natural History Museum (London), Humboldt Museum für Naturkunde (Berlin), Jura-Museum (Eichstätt), and Wyoming Dinosaur Center (Thermopolis), especially Raimund Albersdörfer, Martina Köbl-Ebert, Daniela Schwarz, and Burkhard Pohl for access to the specimens in their care, without which this study would not be possible. NRL is grateful to Tony Russell for his patience as a supervisor and mentor and many discussions and also to Philip J. Currie for the discussions. We further thank Jakob Vinther, Oliver Rauhut, and Xu Xing for the discussion and Tom Holtz for his comments on the manuscript. CF is supported by the Swiss National Science Foundation under grant PZ00P2_174040.


  1. Arbour VM, Burns ME, Bell PR, Currie PJ (2014) Epidermal and dermal integumentary structures of ankylosaurian dinosaurs. J Morphol 275:39–50CrossRefGoogle Scholar
  2. Arratia G, Schultze H-P, Tischlinger H, Viohl G (2015) Solnhofen – Ein Fenster in die Jurazeit. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  3. Bell PR (2014) A review of hadrosaurid skin impressions. In: Eberth DA, Evans DC (eds) Hadrosaurs. Indiana University Press, Bloomington, IN, pp 572–590Google Scholar
  4. Bergman G (1982) Why are the wings Larus fuscus so dark? Ornis Fenn 59:77–83Google Scholar
  5. Bergmann U, Morton R, Manning P, Sellers W, Farrar S, Huntley K, Wogelius R, Larson P (2010) Archaeopteryx feathers and bone chemistry fully revealed via synchrotron imaging. Proc Natl Acad Sci USA 107:9060–9065CrossRefPubMedGoogle Scholar
  6. Bleiweiss R (1987) Development and evolution of avian racket plumes: fine structure and serial homology of the wire. J Morphol 194:23–39CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brinckmann A (1958) Die Morphologie der Schmuckfeder von Aix galericulata L. Rev Suisse Zool 68:485–608CrossRefGoogle Scholar
  8. Carney RM, Vinther J, Shawkey MD, D’Alba L, Ackermann J (2012) New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 3:637CrossRefGoogle Scholar
  9. Chang C, Wu P, Baker RE, Maini PK, Alibardi L, Chuong C-M (2009) Reptile scale paradigm: Evo-Devo, pattern formation and regeneration. Int J Dev Biol 53:813CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chatterjee S, Templin RJ (2003) The flight of Archaeopteryx. Naturwissenschaften 90:27–32CrossRefPubMedGoogle Scholar
  11. Chiappe LM, Coria RA, Dingus L, Jackson F, Chinsamy A, Fox M (1998) Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396:258–261CrossRefGoogle Scholar
  12. Chiappe LM, Ji S-A, Ji Q, Norell MA (1999) Anatomy and systematics of Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of Northeastern China. Bull Am Mus Nat Hist 242:1–89Google Scholar
  13. Christiansen P, Bonde N (2004) Body plumage in Archaeopteryx: a review, and new evidence from the Berlin specimen. C R Palevol 3:99–118CrossRefGoogle Scholar
  14. Christiansen NA, Tschopp E (2010) Exceptional stegosaur integument impressions from the Upper Jurassic Morrison Formation of Wyoming. Swiss J Geosci 103:163–171CrossRefGoogle Scholar
  15. Currie PJ, Chen P-J (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can J Earth Sci 38:1705–1727CrossRefGoogle Scholar
  16. Czerkas SJ, Zhang D, Li J, Li Y (2002) Flying dromaeosaurs. Dinosaur Museum J 1:98–126Google Scholar
  17. Dames W (1884) Über Archaeopteryx. Palaeontologische Abhandlungen 2:119–196Google Scholar
  18. Darwin CR (1859) The origin of species. John Murray, LondonGoogle Scholar
  19. de Buisonjé PH (1985) Climatological conditions during deposition of the Solnhofen limestones. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 45–65Google Scholar
  20. Dial KP (2003) Wing-assisted incline running and the evolution of flight. Science 299:402–404CrossRefPubMedGoogle Scholar
  21. Eagle RA, Tütken T, Martin TS, Tripati AK, Fricke HC, Connely M, Cifelli RL, Eiler JM (2011) Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science 333:443–445CrossRefPubMedGoogle Scholar
  22. Elzanowski A (2002) Archaeopterygidae (Upper Jurassic of Germany). In: Chiappe LM, Witmer LM (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, CA, pp 129–159Google Scholar
  23. Erickson GM, Rogers KC, Yerby SA (2001) Dinosaurian growth patterns and rapid avian growth rates. Nature 412:429–433CrossRefPubMedGoogle Scholar
  24. Erickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, Brochu CA (2004) Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430:772–775CrossRefPubMedGoogle Scholar
  25. Feduccia A (1996) The origin and evolution of birds. Yale University Press, New Haven, CTGoogle Scholar
  26. Feduccia A, Czerkas SA (2015) Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs. J Ornithol 156:1067–1074CrossRefGoogle Scholar
  27. Feduccia A, Tordoff HB (1979) Feathers of Archaeopteryx: asymmetric vanes indicate aerodynamic function. Science 203:1021–1022CrossRefPubMedGoogle Scholar
  28. Feo TJ, Field DJ, Prum RO (2015) Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc R Soc Lond B Biol Sci 282:20142864Google Scholar
  29. Foth C (2012) On the identification of feather structures in stem-line representatives of birds: evidence from fossils and actuopalaeontology. Paläontol Z 86:91–102CrossRefGoogle Scholar
  30. Foth C, Rauhut OWM (2017) Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol Biol 17:236CrossRefPubMedPubMedCentralGoogle Scholar
  31. Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gatesy SM, Dial KP (1996) From frond to fan: Archaeopteryx and the evolution of short-tailed birds. Evolution 50:2037–2048CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gauthier J (1986) Saurischian monophyly and the origin of birds. Memoirs Calif Acad Sci 8:1–55Google Scholar
  34. Goldstein G, Flory KR, Browne BA, Majid S, Ichida JM, Burtt EH Jr, Grubb T Jr (2004) Bacterial degradation of black and white feathers. Auk 121:656–659CrossRefGoogle Scholar
  35. Griffiths PJ (1996) The isolated Archaeopteryx feather. Archaeopteryx 14:1–26Google Scholar
  36. Grigg G, Kirshner D (2015) Biology and evolution of crocodylians. Cornell University Press, Ithaca, NYCrossRefGoogle Scholar
  37. Gunderson AR, Frame AM, Swaddle JP, Forsyth MH (2008) Resistance of melanized feathers to bacterial degradation: is it really so black and white? J Avian Biol 39:539–545CrossRefGoogle Scholar
  38. Han G, Chiappe LM, Ji S-A, Habib M, Turner AH, Chinsamy A, Liu X, Han L (2014) A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat Commun 5:4382CrossRefPubMedPubMedCentralGoogle Scholar
  39. Heilmann G (1926) The origin of birds. Witherby, LondonGoogle Scholar
  40. Heinroth O (1923) Die Flügel von Archaeopteryx. J Ornithol 71:277–283CrossRefGoogle Scholar
  41. Helms J (1982) Zur Fossilization der Federn des Urvogels (Berliner Exemplar). Wissenschaftliche Zeitschrift der Humboldt-Universität, mathematisch-naturwissenschaftliche Reihe 31:185–199Google Scholar
  42. Homberger DG, de Silva KN (2000) Functional microanatomy of the feather-bearing integument: implication for the evolution of birds and avian flight. Am Zool 40:553–574Google Scholar
  43. Hu D, Hou L-H, Zhang L, Xu X (2009) A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643CrossRefPubMedPubMedCentralGoogle Scholar
  44. Huxley TH (1868) On the animals which are most nearly intermediate between birds and reptiles. Ann Mag Nat Hist 2:66–75Google Scholar
  45. Huxley TH (1870) Further evidence of the affinity between the dinosaurian reptiles and birds. Q J Geol Soc 26:12–31CrossRefGoogle Scholar
  46. Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  47. Li Q, Gao K, Vinther J, Shawkey MD, Clarke JA, D’Alba L, Meng Q, Briggs DEG, Prum RO (2010) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372CrossRefPubMedPubMedCentralGoogle Scholar
  48. Li Q, Gao K, Meng Q, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J (2012) Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–1219CrossRefGoogle Scholar
  49. Livezey BC (2003) Evolution of flightlessness in rails (Gruiformes, Rallidae). Ornithol Monogr 53:1–654Google Scholar
  50. Longrich N (2006) Structure and function of hindlimb feathers in Archaeopteryx lithographica. Paleobiology 32:417–431CrossRefGoogle Scholar
  51. Longrich NR, Vinther J, Meng Q, Li Q, Russell AP (2012) Origins and evolution of the avian wing: new evidence from Archaeopteryx lithographica and Anchiornis huxleyi. Curr Biol 22:1–6CrossRefGoogle Scholar
  52. Lucas AM, Stettenheim PR (1972) Avian anatomy: integument, vol 2. U.S. Government Printing Office, Washington, DCGoogle Scholar
  53. Lüdicke M (1974) Radioaktive Markierungsversuche an Federn von Casuarius casuarius. J Ornithol 115:348–364CrossRefGoogle Scholar
  54. Manning PL, Edwards NP, Wogelius RA, Bergmann U, Barden HE, Larson PL, Schwarz-Wings D, Egerton VM, Sokaras D, Mori RA (2013) Synchrotron-based chemical imaging reveals plumage patterns in a 150 million year old early bird. J Anal At Spectrom 28:1024–1030CrossRefGoogle Scholar
  55. Martin LD, Lim J-D (2005) Soft body impression of the hand in Archaeopteryx. Curr Sci 89:1089–1090Google Scholar
  56. Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486CrossRefGoogle Scholar
  57. Mayr G, Pohl B, Hartmann S, Peters DS (2007) The tenth skeletal specimen of Archaeopteryx. Zool J Linnean Soc 149:97–116CrossRefGoogle Scholar
  58. McGowan C (1989) Feather structure in flightless birds and its bearing on the question of the origin of feathers. J Zool 218:537–547CrossRefGoogle Scholar
  59. Meseguer J, Chiappe LM, Sanz JL, Ortega F, Sanz-Andrés A, Pérez-Grande I, Franchini S (2012) Lift devices in the flight of Archaeopteryx. Spanish Journal of Palaeontology 27:125–130Google Scholar
  60. Meyer HV (1862) Archaeopteryx lithographica aus dem lithographischen Schiefer von Solenhofen. Palaeontographica:53–56Google Scholar
  61. Moyer AE, Zheng W, Johnson EA, Lamanna MC, Li D-Q, Lacovara KJ, Schweitzer MH (2014) Melanosomes or microbes: testing an alternative hypothesis for the origin of microbodies in fossil feathers. Sci Rep 4:4233CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nachtigall W, Kempf B (1971) Vergleichende Untersuchungen zur flugbiologischen Funktion des Daumenfittichs (Alula spuria) bei Vögeln. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 71:326–341Google Scholar
  63. Norberg UM (1985a) Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to active flight. Am Nat 126:303–327CrossRefGoogle Scholar
  64. Norberg RA (1985b) Function of vane asymmetry and shaft curvature in bird flight feathers: inferences on flight ability of Archaeopteryx. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 303–318Google Scholar
  65. Norberg UM (1990) Vertebrate flight. Springer, BerlinCrossRefGoogle Scholar
  66. Norberg RA (1995) Feather asymmetry in Archaeopteryx. Nature 374:221CrossRefGoogle Scholar
  67. Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299CrossRefGoogle Scholar
  68. Norell MA, Clark JM, Weintraub R, Chiappe LM, Demberelyin D (1995) A nesting dinosaur. Nature 278:247–248Google Scholar
  69. Norell MA, Ji Q, Gao K, Yuan C, Zhao Y, Wang L (2002) ‘Modern’ feathers on a non-avian dinosaur. Nature 416:36–37CrossRefPubMedGoogle Scholar
  70. Nudds RL, Dyke GJ (2010) Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887–889CrossRefGoogle Scholar
  71. Olson S, Feduccia A (1979) Flight capability and the pectoral girdle of Archaeopteryx. Nature 278:247–248CrossRefGoogle Scholar
  72. Ostrom JH (1973) The ancestry of birds. Nature 242:136CrossRefGoogle Scholar
  73. Ostrom JH (1976) Archaeopteryx and the origin of birds. Biol J Linn Soc 8:91–182CrossRefGoogle Scholar
  74. Ostrom JH (1979) Bird flight: how did it begin? Am Sci 67:46–56PubMedGoogle Scholar
  75. Owen R (1863) On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos Trans R Soc Lond 153:33–47Google Scholar
  76. Paul GS (2002) Dinosaurs of the air: the evolution and loss of flight in dinosaurs and birds. The John Hopkins University Press, Baltimore, MDGoogle Scholar
  77. Pei R, Li Q, Meng Q, Gao K-Q, Norell MA (2014) A new specimen of Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of western Liaoning, China. Am Mus Novit 3821:1–28CrossRefGoogle Scholar
  78. Pei R, Li Q, Meng Q, Norell MA, Gao K (2017) New Specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Middle-Late Jurassic of northeastern China. Bull Am Mus Nat Hist 411:1–66CrossRefGoogle Scholar
  79. Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, OaklandGoogle Scholar
  80. Prum RO (2003) Dinosaurs take to the air. Nature 421:323–324CrossRefPubMedGoogle Scholar
  81. Rauhut OWM, Foth C, Tischlinger H (2018) The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6:e4191CrossRefPubMedPubMedCentralGoogle Scholar
  82. Rauhut OWM, Tischlinger H, Foth C (2019) A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8:e43789Google Scholar
  83. Rayner JMV (2001) On the origin and evolution of flapping flight aerodynamics in birds. In: Gauthier J, Gall LF (eds) New perspectives on the origin and early evolution of birds: proceedings of the international conference in honor of John H. Ostrom. Peabody Museum of Natural History, New Haven, CT, pp 364–381Google Scholar
  84. Rietschel S (1985) Feathers and wings of Archaeopteryx and the question of her flight ability. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 251–260Google Scholar
  85. Sanz JL, Chiappe LM, Pérez-Moreno BP, Buscalioni AD, Moratalla JJ, Ortega F, Poyato-Ariza FJ (1996) An Early Cretaceous bird from Spain and its implications for the evolution of avian flight. Nature 382:442–445CrossRefGoogle Scholar
  86. Speakman JR, Thompson SC (1994) Flight capabilities of Archaeopteryx. Nature 370:514CrossRefGoogle Scholar
  87. Stavenga DG, Leertouwer HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc Lond B Biol Sci 278:2098–2104CrossRefGoogle Scholar
  88. Steiner H (1962) Befunde am dritten Exemplar des Urvogels Archaeopteryx. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 107:197–210Google Scholar
  89. Stephan B (1985) Remarks on reconstruction of Archaeopteryx wing. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 261–265Google Scholar
  90. Stephan B (1987) Urvögel: Archaeopterygiformes. Ziemsen, WittenbergGoogle Scholar
  91. Sullivan C, Wang Y, Hone DW, Wang Y, Xu X, Zhang F (2014) The vertebrates of the Jurassic Daohugou Biota of northeastern China. J Vertebr Paleontol 34:243–280CrossRefGoogle Scholar
  92. Tischlinger H (2005) Neue Informationen zum Berliner Exemplar von Archaeopteryx lithographica H. v. Meyer 1861. Archaeopteryx 23:33–50Google Scholar
  93. Tischlinger H (2009) Der achte Archaeopteryx–das Daitinger Exemplar. Archaeopteryx 27:1–20Google Scholar
  94. Tischlinger H, Unwin D (2004) UV-Untersuchungen des Berliner Exemplars von Archaeopteryx lithographica H. v. Meyer 1861 und der isolierten Archaeopteryx-Feder. Archaeopteryx 22:17–50Google Scholar
  95. Vinther J, Nicholls R, Lautenschlager S, Pittman M, Kaye TG, Rayfield E, Mayr G, Cuthill IC (2016) 3D camouflage in an ornithischian dinosaur. Curr Biol 26:2456–2462CrossRefPubMedPubMedCentralGoogle Scholar
  96. Viohl G (1985) Geology of the Solnhofen lithographic limestone and the Habitat of Archaeopteryx. In: Hecht MKO, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds: proceedings of the international Archaeopteryx conference. Freunde des Jura-Museums Eichstätt, Eichstätt, pp 31–44Google Scholar
  97. Voeten DFAE, Cubo J, de Margerie E, Röper M, Beyrand V, Bureš S, Taffereau P, Sanchez S (2018) Wing bone geometry reveals active flight in Archaeopteryx. Nat Commun 9:923CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang X, Nudds RL, Palmer C, Dyke GJ (2017a) Primary feather vane asymmetry should not be used to predict the flight capabilities of feathered fossils. Science Buelltin 62:1227–1228CrossRefGoogle Scholar
  99. Wang X, Pittman M, Zheng X, Kaye TG, Falk AR, Hartman SA, Xu X (2017b) Basal paravian functional anatomy illuminated by high-detail body outline. Nat Commun 8:14576CrossRefPubMedPubMedCentralGoogle Scholar
  100. Wellnhofer P (2004) The plumage of Archaeopteryx: feathers of a dinosaur? In: Currie PJ, Koppelhus EB, Shugar MA, Wright JL (eds) Feathered dragons: studies on the transition from dinosaurs to birds. Indiana University Press, Bloomington, pp 282–300Google Scholar
  101. Wellnhofer P (2009) Archaeopteryx: the icon of evolution. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  102. Wogelius R, Manning P, Barden H, Edwards N, Webb S, Sellers W, Taylor K, Larson P, Dodson P, You H (2011) Trace metals as biomarkers for eumelanin pigment in the fossil record. Science 333:1622–1626CrossRefPubMedPubMedCentralGoogle Scholar
  103. Xing L, McKellar RC, Wang M, Bai M, O’Connor JK, Benton MJ, Zhang J, Wang Y, Tseng K, Lockley MG, Li G, Zhang W, Xu X (2016) Mummified precocial bird wings in mid-Cretaceous Burmese amber. Nat Commun 7:12089CrossRefPubMedPubMedCentralGoogle Scholar
  104. Xu X, Li F (2016) A new microraptorine specimen (Theropoda: Dromaeosauridae) with a brief comment on the evolution of compound bones in theropods. Vertebrata PalAsiatica 54:269–285Google Scholar
  105. Xu X, Norell MA (2004) A new troodontid dinosaur from China with an avian-like sleeping posture. Nature 431:838–841CrossRefPubMedGoogle Scholar
  106. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four winged dinosaurs from China. Nature 421:335–340CrossRefGoogle Scholar
  107. Xu X, Wang K, Zhang K, Ma Q, Xing L, Sullivan C, Hu D, Cheng S, Wang S (2012) A gigantic feathered dinosaur from the Lower Cretaceous of China. Nature 484:92–95CrossRefGoogle Scholar
  108. Xu X, Zhou Z, Sullivan C, Wang Y, Ren D (2016) An updated review of the Middle-Late Jurassic Yanliao Biota: Chronology, Taphonomy, Paleontology and Paleoecology. Acta Geologica Sinica (English Edition) 90:2229–2243CrossRefGoogle Scholar
  109. Xu X, Currie P, Pittman M, Xing L, Meng Q, Lü J, Hu D, Yu C (2017) Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat Commun 8:14972CrossRefPubMedPubMedCentralGoogle Scholar
  110. Zhang F, Zhou Z (2004) Leg feathers in an Early Cretaceous bird. Nature 341:925CrossRefGoogle Scholar
  111. Zhang F, Zhou Z, Dyke G (2006) Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404CrossRefGoogle Scholar
  112. Zheng X, Zhou Z, Wang X, Zhang F, Zhang X, Wang Y, Wei G, Wang S, Xu X (2013) Hind wings in basal birds and the evolution of leg feathers. Science 339:1309–1312CrossRefGoogle Scholar
  113. Zhou Z, Zhang F (2003a) Jeholornis compared to Archaeopteryx, with a new understanding of the earliest avian evolution. Naturwissenschaften 90:220–225CrossRefPubMedGoogle Scholar
  114. Zhou Z, Zhang F (2003b) Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can J Earth Sci 40:731–747CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nicholas R. Longrich
    • 1
    Email author
  • Helmut Tischlinger
    • 2
  • Christian Foth
    • 3
  1. 1.Department of Biology and BiochemistryThe Milner Centre for Evolution, University of BathBathUK
  2. 2.StammhamGermany
  3. 3.Departement für GeowissenschaftenUniversität FreiburgFreiburgSwitzerland

Personalised recommendations