Introduction to the Morphology, Development, and Ecology of Feathers

  • Christian Foth
Part of the Fascinating Life Sciences book series (FLS)


Feathers are a characteristic of modern birds that differentiate them from all other extant non-avian reptiles. The origin of feathers goes back deep into the Mesozoic, preceding the origin of flight, and early protofeathers were probably present in the ancestral Tetanurae, Dinosauria, or even Ornithodira. Among extant vertebrates, the feathers of modern birds are morphologically the most complex integumentary structure with enormous shape diversity resulting from a hierarchical organization of repetitive morphological and developmental modules. In this chapter, the morphological ground patterns of modern feathers, their underlying developmental processes, and the biological roles of different feather types are reviewed.



I thank Walter Joyce (University of Fribourg) for proofreading this chapter. The review was supported by the Swiss National Science Foundation grant PZ00P2_174040.


  1. Aparicio JM, Bonal R, Cordero PJ (2003) Evolution of the structure of tail feathers: implications for the theory of sexual selection. Evolution 57:397–405CrossRefGoogle Scholar
  2. Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Front Zool 4:23Google Scholar
  3. Barrett PM, Evans DC, Campione NE (2015) Evolution of dinosaur epidermal structures. Biol Lett 11:20150229CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartels T (2003) Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. J Exp Zool (Mol Dev Evol) 298B:91–108CrossRefGoogle Scholar
  5. Bergmann H-H (1987) Die Biologie des Vogels. AULA, WiesbadenGoogle Scholar
  6. Bleiweiss R (1987) Development and evolution of avian racket plumes: fine structure and serial homology of the wire. J Morphol 194:23–39CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brinkmann A (1958) Die Morphologie der Schmuckfeder von Aix galericulata L. Rev Suisse Zool 65:485–608CrossRefGoogle Scholar
  8. Burckhardt D (1954) Beitrag zur embryonalen Pterylose einiger Nesthocker. Rev Suisse Zool 61:551–655CrossRefGoogle Scholar
  9. Busching W-D (2005) Einführung in die Gefieder- und Rupfungskunde. AULA, WiebelsheimGoogle Scholar
  10. Chandler AC (1916) A study of the structure of feathers, with reference to their taxonomic significance. Univ Calif Publ Zool 13:243–446Google Scholar
  11. Chatterjee S (1997) The rise of birds: 225 million years of evolution. The John Hopkins University Press, BaltimoreGoogle Scholar
  12. Chuong C, Edelman GM (1985) Expression of cell-adhesion molecules in embryonic induction. I. Morphogenesis of nestling feathers. J Cell Biol 101:1009–1026CrossRefPubMedGoogle Scholar
  13. D’Alba L, Saranathan V, Clarke JA, Vinther J, Prum RO, Shawkey MD (2011) Colour-producing ß-keratin nanofibres in blue penguin (Eudyptula minor) feathers. Biol Lett 7:543–546CrossRefPubMedPubMedCentralGoogle Scholar
  14. Darwin CR (1871) The descent of man, and selection in relation to sex, vol 2. John Murray, LondonCrossRefGoogle Scholar
  15. Davies HR (1889) Die Entwicklung der Feder und ihre Beziehungen zu anderen Integumentgebilden. Morphol Jahrb 15:560–645Google Scholar
  16. Desselberger H (1930) Ueber das Lipochrom der Vogelfeder. J Ornithol 78:328–376CrossRefGoogle Scholar
  17. Doucet SM, Shawkey MD, Hill GE, Montgomerie R (2006) Iridescent plumage in satin bowerbirds: structure, mechanisms and nanostructural predictors of individual variation in colour. J Exp Biol 209:380–390CrossRefPubMedGoogle Scholar
  18. Dove CL (1997) Quantification of microscopic feather characters used in the identification of the North American plovers. Condor 99:47–57CrossRefGoogle Scholar
  19. Duerden JE (1913) Experiments with ostriches. XXII. The development of the feather, showing absence of cruelty in clipping and quilling. Agric J Union of South Africa 6:648–661Google Scholar
  20. Dumbacher JP, Menon GK, Daly JW (2009) Skin as a toxin storage organ in the endemic new Guinean genus Pitohui. Auk 126:520–530CrossRefGoogle Scholar
  21. Eliason CM, Shawkey MD (2012) A photonic heterostructure produces diverse iridescent colours in duck wing patches. J R Soc Interface 9:2279–2289CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eliason CM, Bitton P-P, Shawkey MD (2013) How hollow melanosomes affect iridescent colour production in birds. Proc R Soc B 280:20131505CrossRefPubMedGoogle Scholar
  23. Ewart JC (1921) The nestling feathers of the mallard, with observations on the composition, origin, and history of feathers. Proc Zool Soc London 1921:609–642Google Scholar
  24. Exner S (1895) Ueber die elektrischen Eigenschaften der Haare und Federn. Pflugers Arch 61:427–449CrossRefGoogle Scholar
  25. Exner S (1896) Ueber die elektrischen Eigenschaften der Haare und Federn. Pflugers Arch 63:305–316CrossRefGoogle Scholar
  26. Feo TJ, Prum RO (2014) Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots. J Exp Zool (Mol Dev Evol) 322B:240–255CrossRefGoogle Scholar
  27. Foth C (2009) Die Morphologie des Erstlingsgefieders ausgewählter Vogeltaxa unter Berücksichtigung der Phylogenie. University of Rostock, GermanyGoogle Scholar
  28. Foth C (2011) The morphology of neoptile feathers: ancestral state reconstruction and its phylogenetic implications. J Morphol 272:387–403CrossRefPubMedPubMedCentralGoogle Scholar
  29. Godefroit P, Sinitsa SM, Dhouailly D, Bolotsky YL, Sizov AV, McNamara ME, Benton MJ, Spagna P (2014) A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345:451–455CrossRefGoogle Scholar
  30. Greenwold MJ, Sawyer RH (2011) Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers. J Exp Zool (Mol Dev Evol) 316:609–616CrossRefGoogle Scholar
  31. Gregg K, Wilton SD, Parry DAD, Rogers GE (1984) A comparison of genomic coding sequences for feather and scale keratins: structural and evolutionary implications. EMBO J 3:175–178CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haake AR, König G, Sawyer RH (1984) Avian feather development: relationships between morphogenesis and keratinization. Dev Biol 106:406–413CrossRefGoogle Scholar
  33. Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool (Mol Dev Evol) 294:160–176CrossRefGoogle Scholar
  34. Hopp TP, Orsen MJ (2004) Dinosaur brooding behavior and the origin of flight feathers. In: Currie PJ, Koppelhus EB, Shugur MA, Wright JL (eds) Feathered dragons. Indiana University Press, Bloomington, pp 234–250Google Scholar
  35. Hosker A (1936) Studies on the epidermal structures of birds. Philos Trans R Soc Lond Ser B 226:143–188CrossRefGoogle Scholar
  36. Hudon J (2005) Considerations in the conservation of feathers and hair, particularly their pigments. In: Brunn M, Burns JA (eds) Fur trade legacy. The preservation of organic materials. Canadian Association for Conservation of Cultural Property, Ottawa, pp 127–147Google Scholar
  37. Lillie FR, Wang H (1941) Physiology of development of the feather. V. Experimental morphogenesis. Physiol Zoöl 14:103–133CrossRefGoogle Scholar
  38. Livezey BC (2003) Evolution of flightlessness in rails (Gruiformes: Rallidae): phylogenetic, ecomorphological, and ontogenetic perspectives. Ornithol Monogr 53:1–654Google Scholar
  39. Lucas AM, Stettenheim PR (1972) Avian anatomy. Integument, Part I and II. U.S. Government Printing Office, Washington, DCGoogle Scholar
  40. Lüdicke M (1974) Radioaktive Markierungsversuche an Federn von Casuarius casuarius. J Ornithol 115:348–364CrossRefGoogle Scholar
  41. Mason CW (1923) Structural colors in feathers. II. J Phys Chem 27:401–447CrossRefGoogle Scholar
  42. McGowan C (1989) Feather structure in flightless birds and its bearing on the question of the origin of feathers. J Zool (Lond) 218:537–547CrossRefGoogle Scholar
  43. Metcheva R, Yurukova L, Teodorova S, Nikolova E (2006) The penguin feathers as bioindicator of Antarctica environmental state. Sci Total Environ 362:259–265CrossRefGoogle Scholar
  44. Mickoleit G (2004) Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  45. Norberg RÅ (1985) Function of vane asymmetry and shaft curvature in bird flight feathers; inferences on flight ability of Archaeopteryx. In: Hecht MK, Ostrom JH, Viohl G, Wellnhofer P (eds) The beginnings of birds. Freunde des Jura-Museums, Eichstätt, pp 303–318Google Scholar
  46. Norell MA, Xu X (2005) Feathered dinosaurs. Annu Rev Earth Planet Sci 33:277–299CrossRefGoogle Scholar
  47. Prin F, Dhouailly D (2004) How and when the regional competence of chick epidermis is established: feathers vs. scutate and reticualte scales, a problem en route to a solution. Int J Dev Biol 48:137–148CrossRefGoogle Scholar
  48. Prum RO (1999) Development and evolutionary origin of feathers. J Exp Zool (Mol Dev Evol) 285:291–306CrossRefGoogle Scholar
  49. Prum RO (2005) Evolution of the morphological innovations of feathers. J Exp Zool (Mol Dev Evol) 304B:570–579CrossRefGoogle Scholar
  50. Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295CrossRefGoogle Scholar
  51. Prum RO, Dyck J (2003) A hierarchical model of plumage: morphology, development, and evolution. J Exp Zool (Mol Dev Evol) 298B:73–90CrossRefGoogle Scholar
  52. Prum RO, Williamson S (2001) Theory of the growth and evolution of feather shape. J Exp Zool (Mol Dev Evol) 291:30–57CrossRefGoogle Scholar
  53. Prum RO, Williamson S (2002) Reaction-diffusion models of within-feather pigmentation patterning. Proc R Soc Lond B 269:781–792CrossRefGoogle Scholar
  54. Rauhut OWM, Foth C, Tischlinger H, Norell MA (2012) Exceptionally preserved juvenile megalosauroid theropod dinosaur with filamentous integument from the late Jurassic of Germany. Proc Natl Acad Sci U S A 109:11746–11751CrossRefPubMedPubMedCentralGoogle Scholar
  55. Reichholf JH (1996) Die Feder, die Mauser und der Ursprung der Vögel. Archaeopteryx 14:27–38Google Scholar
  56. Rensch B (1925) Untersuchungen zur Phylogenese der Schillerstruktur. J Ornithol 73:127–147CrossRefGoogle Scholar
  57. Sawyer RH, Salvatore BA, Potylicky T-TF, French JO, Glenn TC, Knapp LW (2003) Origin of feathers: feather Beta (β) keratins are expressed in discrete epidermal cell populations of embryonic scutate scales. J Exp Zool (Mol Dev Evol) 295B:12–24CrossRefGoogle Scholar
  58. Sawyer RH, Rogers L, Washington LD, Glenn TC, Knapp LW (2005) Evolutionary origin of the feather epidermis. Dev Dyn 232:256–267CrossRefPubMedGoogle Scholar
  59. Schaub S (1912) Die Nestdunen der Vögel und ihre Bedeutung für die Phylogenie der Feder. Verh Naturforsch Ges Basel 23:131–182Google Scholar
  60. Shawkey MD, Hill GE (2006) Significance of a basal melanin layer to production of non-iridescent structural plumage color: evidence from an amelanotic Steller’s jay (Cyanocitta stelleri). J Exp Biol 209:1245–1250CrossRefPubMedGoogle Scholar
  61. Shawkey MD, Hauber ME, Estep LK, Hill GE (2006) Evolutionary transitions and mechanisms of matte and iridescent plumage coloration in grackles and allies (Icteridae). J R Soc Interface 3:777–786CrossRefPubMedPubMedCentralGoogle Scholar
  62. Shawkey MD, D’Alba L, Xiao M, Schutte M, Buchholz R (2015) Ontogeny of an iridescent nanostructure composed of hollow melanosomes. J Morphol 276:378–384CrossRefPubMedGoogle Scholar
  63. Sick H (1937) Morphologisch-funktionelle Untersuchung über die Feinstruktur der Vogelfeder. J Ornithol 85:206–372CrossRefGoogle Scholar
  64. Starck D (1982) Vergleichende Anatomie der Wirbeltier auf evolutionsbiologischer Grundlage. Bd. 3: Organe des aktiven Bewegungsapparates, der Koordination, der Umweltbeziehung, des Stoffwechsels und der Fortplanzung. Springer, BerlinCrossRefGoogle Scholar
  65. Stavenga DG, Leertouwe HL, Marshall NJ, Osorio D (2011) Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc R Soc B 278:2098–2104CrossRefPubMedGoogle Scholar
  66. Storch V, Welsch U (1997) Systematische Zoologie. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  67. Thomas ALR (1997) On the tails of birds – what are the aerodynamic functions of birds’ tails, with their incredible diversity of form? Bioscience 47:216–225Google Scholar
  68. Vigneron JP, Lousse V, Colomer J-F, Rassart M, Louette M (2006) Complex optical structure in the ribbon-like feathers of the African open-bill stork. Proc SPIE 6320:632014CrossRefGoogle Scholar
  69. Völker O (1938) Porphyrin in Vogelfedern. J Ornithol 86:436–456CrossRefGoogle Scholar
  70. Watson GE (1963) The mechanism of feather replacement during natural molt. Auk 80:486–495CrossRefGoogle Scholar
  71. Wetherbee DK (1957) Natal plumages and downy pteryloses of passerine birds of North America. Bull Am Mus Nat Hist 113:339–436Google Scholar
  72. Wohlauer E (1901) Die Entwicklung des Embryonalgefieders von Eudyptes chrysocome. Z Morphol Anthropol 4:149–178Google Scholar
  73. Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47:311–329Google Scholar
  74. Yu M, Wu P, Widelitz RB, Chuong C (2002) The morphogenesis of feathers. Nature 420:308–312CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yu M, Yue Z, Wu P, Wu D, Mayer J-A, Medina M, Widelitz RB, Jiang T, Chuong C (2004) The developmental biology of feather follicles. Int J Dev Biol 48:181–191CrossRefPubMedPubMedCentralGoogle Scholar
  76. Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R (2003) Coloration strategies in peacock feathers. Proc Natl Acad Sci U S A 100:12576–12578CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Christian Foth
    • 1
  1. 1.Department of GeosciencesUniversity of FribourgFribourgSwitzerland

Personalised recommendations