Advertisement

Fusion and Enhancement Techniques for Processing of Multispectral Images

  • Ashwani Kumar Aggarwal
Chapter

Abstract

With recent advances in sensor technology, several sensors are being extensively used to continuously monitor agriculture areas to have better yield. These sensors, which include Red, Green, Blue(RGB) cameras, thermal cameras, infrared radiation (IR) cameras, multispectral sensors, and hyperspectral sensors are either ground based sensors or unmanned aerial vehicle (UAV) based sensors. While ground based sensors do not have limitation of sensor size and weight in most of the cases, however, the field of data capture of such sensors is limited as compared to sensors mounted on UAVs. In this chapter, various techniques to capture imagery of agriculture fields using several sensors are discussed with special focus on enhancement and fusion techniques used for processing of multispectral images. Although several methods are available in literature, which work in either spatial domain or frequency domain to enhance multispectral images, however, each of those methods suffer from their own drawbacks. Existing multispectral image fusion methods directly take images captured using different wavelengths of electromagnetic spectrum and fuse them based on template matching, feature based or several other techniques. Such methods are quick in performing fusion task, however, the required information is sometimes missed or redundant information is embedded in the fused image causing large size of multispectral image. The images are enhanced based on histogram equalization and homomorphic filtering before applying fusion algorithm. Experiments were conducted on a range of multispectral images and fusion results obtained are promising.

Keywords

Multispectral images Homomorphic filtering Fusion Histogram equalization Remote sensing 

References

  1. Cheng J-H, Sun D-W, Qu J, Pu H (2016) Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J Food Eng 182:9–17.  https://doi.org/10.1016/j.jfoodeng.2016.02.004 CrossRefGoogle Scholar
  2. Corner BR, Narayanan RM, Reichenbach SE (2003). Noise estimation in remote sensing imagery using data masking. Int J Remote Sens 24(4):689–702. Retrieved from  https://doi.org/10.1080/01431160210164271 CrossRefGoogle Scholar
  3. Doering D, Vizzotto M, Bredemeier C, da Costa C, Henriques R, Pignaton E, Pereira C (2016) MDE-based development of a multispectral camera for precision agriculture. IFAC-Papers OnLine 49(30):24–29. Retrieved from http://www.sciencedirect.com/science/article/pii/S2405896316325551. (4th IFAC Symposium on Telematics Applications TA 2016).  https://doi.org/10.1016/j.ifacol.2016.11.117 CrossRefGoogle Scholar
  4. Farah IR, Boulila W, Ettabaa KS, Ahmed MB (2008) Multiapproach system based on fusion of multispectral images for land-cover classification. IEEE Trans Geosci Remote Sens 46(12):4153–4161.  https://doi.org/10.1109/TGRS.2008.2001554 CrossRefGoogle Scholar
  5. Hagag A, Hassan E, Amin M, Abd El-Samie F, Fan X (2016) Satellite multispectral image compression based on removing sub-bands. Optik Int J Light Electron Opt 131:1023–1035.  https://doi.org/10.1016/j.ijleo.2016.11.172 CrossRefGoogle Scholar
  6. Herrero-Huerta M, Hernandez D, Rodrguez-Gonzlvez P, Gonzlez-Aguilera D, Gonzalez-Piqueras J (2014) Vicarious radiometric calibration of a multispectral sensor from an aerial trike applied to precision agriculture. Comput Electron Agric 108:2838.  https://doi.org/10.1016/j.compag.2014.07.001 CrossRefGoogle Scholar
  7. Hong K, Liu X, Liu G, Chen W (2018) Detection of physical stress using multispectral imaging. Neurocomputing 329:116–128.  https://doi.org/10.1016/j.neucom.2018.10.011 CrossRefGoogle Scholar
  8. Hryvachevskyi A, Prudyus I, Lazko L, Fabirovskyy S (2018) Methods of multispectral image fusion at the pixel level. In 2018 14th international conference on advanced trends in radioelecrtronics, Telecommunications and Computer Engineering (TCSET), pp 102–107.  https://doi.org/10.1109/TCSET.2018.8336165
  9. Huang W, Li J, Wang Q, Chen L (2015) Development of a multispectral imaging system for online detection of bruises on apples. J Food Eng 146:6271. Retrieved from http://www.sciencedirect.com/science/article/pii/S0260877414003641.  https://doi.org/10.1016/j.jfoodeng.2014.09.002 CrossRefGoogle Scholar
  10. Huang Y, Xin Chen Z, Yu T, Zhi Huang X, Fa Gu X (2018) Agricultural remote sensing big data: Management and applications. J Integr Agric 17(9):1915–1931. Retrieved from http://www.sciencedirect.com/science/article/pii/S2095311917618598s.  https://doi.org/10.1016/S2095-3119(17)61859-8 CrossRefGoogle Scholar
  11. Hupple CW, Morscher S, Burton NC, Pagel MD, McNally LR, Crdenas-Rodrguez J (2018) A light- fluence-independent method for the quantitative analysis of dynamic contrast-enhanced multispectral optoacoustic tomography (DCE MSOT). Photo-Dermatology 10:54–64. Retrieved from http://www.sciencedirect.com/science/article/pii/S2213597917300496.  https://doi.org/10.1016/j.pacs.2018.04.003 CrossRefGoogle Scholar
  12. Inglada J (2016) Land cover mapping from optical images. In: Land surface remote sensing in agriculture and Forest. Elsevier, pp 81–111Google Scholar
  13. Khademi G, Ghassemian H (2017) Bayesian fusion of multispectral and panchromatic images. In 2017 10th Iranian conference on machine vision and image processing (MVIP), pp 20–25.  https://doi.org/10.1109/IranianMVIP.2017.8342363
  14. Kumar A, Oishi T, Ono S, Banno A, Ikeuchi K (2013) Global coordinate adjustment of 3D survey models in world geodetic system under unstable GPS condition. 20th ITS World Congress Tokyo 2013Google Scholar
  15. Liang J, Zhang Y, Mei S (2017) Hyperspectral and multispectral image fusion using dual-source localized dictionary pair. In 2017 international symposium on intelligent signal processing and communication systems (ISPACS), pp 261–264.  https://doi.org/10.1109/ISPACS.2017.8266485
  16. Liu P, Eom KB (2013) Restoration of multispectral images by total variation with auxiliary image. Opt Lasers Eng 51(7):873–882. Retrieved from http://www.sciencedirect.com/science/article/pii/S0143816613000572.  https://doi.org/10.1016/j.optlaseng.2013.02.001 CrossRefGoogle Scholar
  17. Liu S, Li L, Gao W, Zhang Y, Liu Y, Wang S, Lu J (2018) Diagnosis of nitrogen status in winter oilseed rape (brassica napus l.) using in-situ hyperspectral data and unmanned aerial vehicle (uav) multispectral images. Comput Electron Agric 151:185–195.  https://doi.org/10.1016/j.compag.2018.05.026 CrossRefGoogle Scholar
  18. Lu D, Weng Q (2004) Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+ imagery. Photogramm Eng Remote Sens 70(9):1053–1062CrossRefGoogle Scholar
  19. Martins F, Escobar R, Cortes C, Pino A, Salgado M, Pereira E, Cardemil J (2015) Estimating the potential for solar energy utilization in Chile by satellite-derived data and ground station measurements. Sol Energy 121:139–151.  https://doi.org/10.1016/j.solener.2015.08.034 CrossRefGoogle Scholar
  20. Palsson F, Sveinsson JR, Ulfarsson MO (2017) Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network. IEEE Geosci Remote Sens Lett 14(5):639–643.  https://doi.org/10.1109/LGRS.2017.2668299 CrossRefGoogle Scholar
  21. Qian S, Chelikani S, Wang P, Collins LM., Bradbury K, Malof JM (2017) Trading spatial resolution for improved accuracy when using detection algorithms on remote sensing imagery. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp 3716–3719.  https://doi.org/10.1109/IGARSS.2017.8127806
  22. Qin J, Chao K, Kim MS, Lu R, Burks TF (2013) Hyperspectral and multispectral imaging for evaluating food safety and quality. J Food Eng 118:157171.  https://doi.org/10.1016/j.jfoodeng.2013.04.001 CrossRefGoogle Scholar
  23. Restaino R, Vivone G, Dalla Mura M, Chanussot J (2016) Fusion of multispectral and panchromatic images based on morphological operators. IEEE Trans Image Process 25(6):2882–2895CrossRefGoogle Scholar
  24. Saritha S, Kumar S (2015) A hierarchical framework for the classification of multispectral imagery. Procedia Comput Sci 46:78–85.  https://doi.org/10.1016/j.procs.2015.01.060 CrossRefGoogle Scholar
  25. Saura JR, Reyes-Menendez A, Palos-Sanchez P (2019) Mapping multispectral digital images using a cloud computing software: applications from UAV images. Heliyon 5(2):e01277. Retrieved from http://www.sciencedirect.com/science/article/pii/S2405844018328184.  https://doi.org/10.1016/j.heliyon.2019.e01277 CrossRefGoogle Scholar
  26. Su J, Liu C, Coombes M, Hu X, Wang C, Xu X, Chen W-H (2018) Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput Electron Agric 155:157–166. Retrieved from http://www.sciencedirect.com/science/article/pii/S0168169918312584.  https://doi.org/10.1016/j.compag.2018.10.017 CrossRefGoogle Scholar
  27. Sun B, Yuan N, Cao C, Hardeberg JY (2018) Design of four-band multispectral imaging system with one single-sensor. Futur Gener Comput Syst 86:670–679.  https://doi.org/10.1016/j.future.2018.04.056 CrossRefGoogle Scholar
  28. Sylla D, Minghelli-Roman A, Blanc P, Mangin A, Fan-ton Dandon O (2014) Fusion of multispectral images by extension of the pan-sharpening arsis method. IEEE J Sel Top Appl Earth Observ Remote Sens 7:1781–1791.  https://doi.org/10.1109/JS-TARS.2013.2271911 CrossRefGoogle Scholar
  29. Tian L, Du Q, Younan N, Kopriva I (2016) Multispectral image enhancement with extended offset-sparsity decomposition. In: 2016 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 4383–4386Google Scholar
  30. Wei Q, Bioucas-Dias J, Dobigeon N, Tourneret J-Y (2014) Hyperspectral and multispectral image fusion based on a sparse representation. IEEE Trans Geosci Remote Sens 53:3658–3668.  https://doi.org/10.1109/TGRS.2014.2381272 CrossRefGoogle Scholar
  31. Xiao TG, Weis JA, Gayzik FS, Thomas A, Chiba A, Gurcan MN, Topaloglu U, Samykutty A, McNally LR (2018) Applying dynamic contrast enhanced MSOT imaging to intratumoral pharmacokinetic modeling. Photo-Dermatology 11:28–35. Retrieved from http://www.sciencedirect.com/science/article/pii/S2213597918300120.  https://doi.org/10.1016/j.pacs.2018.07.003 CrossRefGoogle Scholar
  32. Yoshioka H-T, Liu C, Hayashi K (2015) Multispectral fluorescence imaging for odorant discrimination and visualization. Sensors Actuators B Chem 220:1297–1304.  https://doi.org/10.1016/j.snb.2015.07.073 CrossRefGoogle Scholar
  33. Zhou J, Pavek J, Shelton SC, Holden ZJ, Sankaran S (2016) Aerial multispectral imaging for crop hail damage assessment in potato. Comput Electron Agric 127:406–412.  https://doi.org/10.1016/j.compag.2016.06.019 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ashwani Kumar Aggarwal
    • 1
  1. 1.Sant Longowal Institute of Engineering and Technology (SLIET)Longowal, SangrurIndia

Personalised recommendations