Rheological Properties of Yogurt: Effects of Ingredients, Processing and Handling

  • Stephanie Clark
  • Minto MichaelEmail author
  • Karen A. Schmidt
Part of the Food Engineering Series book series (FSES)


One of the most beloved of all dairy products, yogurt comes in a multitude of flavors and styles worldwide. There is no one ideal body or texture but a range of appealing rheological properties available in yogurt products, resulting from a complex interplay of microbial cultures, dairy and non-dairy ingredients, processing conditions, and storage and handling practices. This chapter summarizes some of the recent published literature centered on this complex interplay, in particular how these factors impact the rheological and sensory properties of the final yogurt products.


  1. Abou-Soliman, N. H. I., Sakr, S. S., & Awad, S. (2017). Physico-chemical, microstructural and rheological properties of camel-milk yogurt as enhanced by microbial transglutaminase. Journal of Food Science and Technology, 54(6), 1616–1627.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Al-Zoreky, N. S., & Al-Otaibi, M. M. (2015). Suitability of camel milk for making yogurt. Food Science and Biotechnology, 24(2), 601–606.CrossRefGoogle Scholar
  3. Amatayakul, T., Halmos, A. L., Sherkat, F., & Shah, N. P. (2006). Physical characteristics of yoghurts made using exopolysaccharide-producing starter cultures and varying casein to whey protein ratios. International Dairy Journal, 16, 40–51.CrossRefGoogle Scholar
  4. Bakirci, S., Dagdemir, E., Boran, O. S., & Hayaloglu, A. A. (2017). The effect of pumpkin fibre on quality and storage stability of reduced-fat set-type yogurt. International Journal of Food Science and Technology, 52, 180–187.CrossRefGoogle Scholar
  5. Benezech, T., & Maingonnat, J. F. (1994). Characterization of rheological properties of yoghurt – A review. Journal of Food Engineering, 21, 447–472.CrossRefGoogle Scholar
  6. Bhullar, Y., Uddin, M. A., & Shah, N. (2002). Effects of ingredients supplementation on textural characteristics and microstructure of yoghurt. Milchwissenschaft, 57(6), 328–332.Google Scholar
  7. Bong, D. D., & Moraru, C. I. (2014). Use of micellar casein concentrate for Greek-style yogurt manufacturing: Effects on processing and product properties. Journal of Dairy Science, 97, 1259–1269.PubMedCrossRefGoogle Scholar
  8. Boubellouta, T., Galtier, V., & Dufour, E. (2011). Structural changes of milk components during acid-induced coagulation kinetics as studied by synchronous fluorescence and mid-infrared spectroscopy. Applied Spectroscopy, 65(3), 284–292.PubMedCrossRefGoogle Scholar
  9. Broadbent, J. R., McMathon, D. J., Welker, D. L., Oberg, C. J., & Moineau, S. (2003). Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. Journal of Dairy Science, 86, 407–423.PubMedCrossRefGoogle Scholar
  10. Cerning, J. (1995). Production of exocellular polysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait, 75, 463–472.CrossRefGoogle Scholar
  11. Chandan, R. C. (2006). Chapter 1: History and consumption trends. In R. C. Chandan, C. H. White, A. Kilara, & Y. H. Hui (Eds.), Manufacturing yogurt and fermented milks (pp. 3–15). Ames: Blackwell Publishing.CrossRefGoogle Scholar
  12. Chandan, R. C., Gandhi, A., & Shah, N. P. (2017). Yogurt: Historical background, health benefits, and global trade. In N. P. Shah (Ed.), Yogurt in health and disease prevention (pp. 3–29). Cambridge, MA: Academic.CrossRefGoogle Scholar
  13. Chen, J. S., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science and Technology, 25(1), 4–12.CrossRefGoogle Scholar
  14. Conti-Silva, A. C., Ichiba, A. K. T., da Silveira, A. L., Albano, K. M., & Nicoletti, V. R. (2018). Viscosity of liquid and semisolid materials: Establishing correlations between instrumental analyses and sensory characteristics. Journal of Texture Studies, 49, 569–577.PubMedCrossRefGoogle Scholar
  15. Costa, M. P., Frasao, B. S., Silva, A. C. O., Freitas, M. Q., Franco, R. M., & Conte-Junior, C. A. (2015). Cupuassu (Theobroma grandiflorum) pulp, probiotic, and prebiotic: Influence on color, apparent viscosity, and texture of goat milk yogurts. Journal of Dairy Science, 98, 5995–6003.PubMedCrossRefGoogle Scholar
  16. Cui, B., Lu, Y. M., Tan, C. P., Wang, G. Q., & Li, G. H. (2014). Effect of cross-linked acetylated starch content on the structure and stability of set yoghurt. Food Hydrocolloids, 35, 576–582.Google Scholar
  17. Dabija, A., Codina, G. G., Ropciuc, S., Gatlan, A.-M., & Rusu, L. (2018). Assessment of the antioxidant and quality attributes of yogurt enhanced with wild herbs extracts. Journal of Food Quality. Scholar
  18. Damin, M. R., Alcantara, M. R., Nunes, A. P., & Oliveira, M. N. (2009). Effect of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheology properties and structure of nonfat stirred yogurt. LWT- Food Science and Technology, 42, 1744–1750.CrossRefGoogle Scholar
  19. De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23, 153–177.PubMedCrossRefGoogle Scholar
  20. Dimitreli, G., Gregoriou, E. A., Kalantzidis, G., & Antoniou, K. D. (2013). Rheological properties of kefir as affected by heat treatment and whey protein addition. Journal of Texture Studies, 44, 418–423.CrossRefGoogle Scholar
  21. Dönmez, Ö., Mogol, B. A., & Gökmen, V. (2017). Syneresis and rheological behaviors of set yogurt containing green tea and green coffee powders. Journal of Dairy Science, 100, 901–907.PubMedCrossRefGoogle Scholar
  22. Gursel, A., Gursoy, A., Anli, E. A. K., Budak, S. O., Aydemir, S., & Durlu-Ozkaya, F. (2016). Role of milk protein–based products in some quality attributes of goat milk yogurt. Journal of Dairy Science, 99, 2694–2703.PubMedCrossRefGoogle Scholar
  23. Graveland-Bikker, J. F., & Anema, S. G. (2003). Effect of individual whey proteins on the rheological properties of acid gels prepared from heated skim milk. International Dairy Journal 13, 401–408.Google Scholar
  24. González-Martınez, C., Becerra, M., Cháfer, M., Albors, A., Carot, J. M., & Chiralt, A. (2002). Influence of substituting milk powder for whey powder on yoghurt quality. Trends in Food Science and Technology, 13, 334–340.Google Scholar
  25. Harte, F., Clark, S., & Barbosa-Canovas, G. V. (2007). Yield stress for initial firmness determination on yogurt. Journal of Food Engineering, 80, 990–995.CrossRefGoogle Scholar
  26. Hassan, A. N., Frank, J. F., Schmidt, K. A., & Shalabi, S. I. (1996). Textural properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science, 79, 2096–2103.Google Scholar
  27. Hassan, A. N., Ipsen, R., Janzen, T., & Qvist, K. B. (2003). Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. Journal of Dairy Science, 86, 1632–1638.PubMedCrossRefGoogle Scholar
  28. Hematyar, N., Samarin, A. M., Poorazarang, H., & Elhamirad, A. H. (2012). Effect of gums on yogurt characteristics. World Applied Sciences Journal, 20(5), 661–665.Google Scholar
  29. Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. In N. P. Shah (Ed.), Yogurt in health and disease prevention (pp. 69–85). Cambridge, MA: Academic.CrossRefGoogle Scholar
  30. Hoppert, K., Zahn, S., Jänecke, L., Mai, R., Hoffman, S., & Rohm, H. (2013). Consumer acceptance of regular and reduced-sugar yogurt enriched with different types of dietary fiber. International Dairy Journal, 28, 1–7.CrossRefGoogle Scholar
  31. Isleten, M., & Karagul-Yuceer, Y. (2006). Effects of dried dairy ingredients on physical and sensory properties of nonfat yogurt. Journal of Dairy Science, 89, 2865–2872.CrossRefGoogle Scholar
  32. Izadi, Z., Nasirpour, A., Garoosi, G. A., & Tamjidi, F. (2015). Rheological and physical properties of yogurt enriched with phytosterol during storage. Journal of Science and Technology, 52(8), 5341–5346.Google Scholar
  33. Jaros, D., Rohm, H., Haque, A., Bonaparte, C., & Kneifel, W. (2002). Influence of the starter culture on the relationship between dry matter content and physical properties of set-style yogurt. Milchwissenschaft - Milk Science International, 57, 325–328.Google Scholar
  34. Khanal, S. N., & Lucey, J. A. (2017). Evaluation of the yield, molar mass of exopolysaccharides, and rheological properties of gels formed during fermentation of milk by Streptococcus thermophilus strains St-143 and ST-10255y. Journal of Dairy Science, 100, 6906–6917.PubMedCrossRefGoogle Scholar
  35. Lee, W. J., & Lucey, J. A. (2006). Impact of gelation conditions and structural breakdown on the physical and sensory properties of stirred yogurts. Journal of Dairy Science, 89, 2374–2385.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties if yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136.CrossRefGoogle Scholar
  37. Liu, L., Li, C., & Liu, J. (2017). Rheological and physical characteristics of on-fate set yogurt prepared with EPS-producing Streptococcus thermophilus and an H+-ATPase-defective mutant Lactobacillus delbrueckii subsp. bulgaricus. International Journal of Food Properties, 20(4), 745–753.CrossRefGoogle Scholar
  38. Lobato-Calleros, C., Ramírez-Santiago, E., Vernon-Carter, J., & Alvarez-Ramirez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115.CrossRefGoogle Scholar
  39. Low, D., Ahlgren, J. A., Horne, D., McMahon, D. J., Oberg, C. J., & Broadbent, J. R. (1998). Role of Streptococcus thermophilus MR-1C capsular exopolysaccharide in cheese moisture retention. Applied and Environmental Microbiology, 64, 2147–2151.PubMedPubMedCentralGoogle Scholar
  40. Lubbers, S., Decourcelle, N., Vallet, N., & Guichard, E. (2004). Flavor release and rheology behavior of strawberry fat free stirred yogurt during storage. Journal of Agricultural and Food Chemistry, 52, 3077–3085.PubMedCrossRefGoogle Scholar
  41. Lucy, J. A., & Singh, H. (1997). Formation and physical properties of acid milk gels: A review. Foodservice Research International, 30(7), 529–542.CrossRefGoogle Scholar
  42. Madadlou, A., Emam-Djomeh, Z., Mousavi, M. E., Mohamadifar, M., & Ehsani, M. (2010). Acid-induced gelation behavior of sonicated casein solutions. Ultrasonics Sonochemisry, 17, 153–158.CrossRefGoogle Scholar
  43. Marafon, A. P., Sumi, A., Granato, D., Alcântara, M. R., Tamime, A. Y., & de Oliveira, M. N. (2011). Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage. Journal of Dairy Science, 94, 5330–5340.PubMedCrossRefGoogle Scholar
  44. Mathias, R. R. D. S., de Carvalho, I. C., de Carvalho, C. W. P., & Sérvulo, E. F. C. (2011). Rheological characterization of collee-flavored yogurt with different types of thickener. Alim. Nutr. Araraquara., 22, 521–529.Google Scholar
  45. Meletharayil, G. H., Patel, H. A., Metzger, L. E., Marella, C., & Huppertz, T. (2018). Influence of partially demineralized milk proteins on rheological properties and microstructure of acid gels. Journal of Dairy Science, 101, 1864–1871.PubMedCrossRefGoogle Scholar
  46. Morell, P., Hernando, I., Llorca, E., & Fiszman, S. (2015). Yogurts with an increased protein content and physically modified starch: Rheological, structural, oral digestion and sensory properties related to enhanced satiating capacity. Foodservice Research International, 70, 64–73.CrossRefGoogle Scholar
  47. Mottar, J., Bassier, A., Joniau, M., & Baiert, J. (1989). Effect of heat induced association of whey protein and casein micelles on yoghurt texture. Journal of Dairy Science, 72(9), 2247–2256.CrossRefGoogle Scholar
  48. Mudgil, D., Barak, S., & Khatkar, B. S. (2017). Texture profile analysis of yogurt as influenced by partially hydrolyzed guar gum and process variables. Journal of Food Science and Technology, 54(12), 3810–3817.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72, 90–104.CrossRefGoogle Scholar
  50. Ozcan, T., Horne, D. S., & Lucey, J. A. (2015). Yogurt made from milk heated at different pH values. Journal of Dairy Science, 98, 6749–6758.PubMedCrossRefGoogle Scholar
  51. Pang, Z., Deeth, H., & Bansal, N. (2015). Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Research International, 72, 62–73.CrossRefGoogle Scholar
  52. Pang, Z., Deeth, H., Prakash, S., & Bansal, N. (2016). Development of rheological and sensory properties of combinations of milk proteins and gelling polysaccharides as potential gelatin replacements in the manufacture of stirred acid milk gels and yogurt. Journal of Food Engineering, 169, 27–37.CrossRefGoogle Scholar
  53. Peng, Y., Horne, D. S., & Lucey, J. A. (2009). Impact of preacidification of milk and fermentation time on the properties of yogurt. Journal of Dairy Science, 92, 2977–2990.PubMedCrossRefGoogle Scholar
  54. Prakash, S., Tan, D. D. Y., & Chen, Y. (2013). Applications of tribology in studying food oral processing and texture perception. Foodservice Research International, 54, 1627–1635.CrossRefGoogle Scholar
  55. Prasanna, P. H. P., Grandison, A. S., & Charalampopoulos, D. (2013). Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS)producing Bifidobacterium strains. Food Research International, 51, 15–22.CrossRefGoogle Scholar
  56. Ramchandran, L., & Shah, N. P. (2009). Effect of exopolysaccharides and inulin on the proteolytic, angiotensin-I-converting enzyme- and α-glucosidase-inhibitory activities as well as on textural and rheological properties of low-fat yogurt during refrigerated storage. Dairy Science and Technology, 89(6), 583–600.CrossRefGoogle Scholar
  57. Ramchandran, L., & Shah, N. P. (2010). Characterization of functional. Biochemical and textural properties of symbiotic low-fat yogurts during refrigerated storage. LWT- Food Science and Technology, 43, 819–827.CrossRefGoogle Scholar
  58. Rawson, H. L., & Marshall, V. K. (1997). Effect of ‘ropy’ strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. International Journal of Food Science and Technology, 32, 213–220.CrossRefGoogle Scholar
  59. Remeuf, F., Mohammed, S., Sodini, I., & Tissier, J. P. (2003). Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. International Dairy Journal, 13, 773–782.CrossRefGoogle Scholar
  60. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2010). A comparision of selected quality characteristics of yogurts prepared from thermosonicated and conventionally heated milks. Food Chemistry, 119, 1108–1113.CrossRefGoogle Scholar
  61. Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT- Food Science and Technology, 65, 978–986.CrossRefGoogle Scholar
  62. Saleh, M., Al-Baz, F., & Al-Ismail, K. (2018). Effects of hydrocolloids as fat replacers on the physicochemical properties of produced labneh. Journal of Texture Studies, 49, 113–120.PubMedCrossRefGoogle Scholar
  63. Salih, M. M., & Hamid, O. I. A. (2013). Effect of fortifying camel’s milk with skim milk powder on the physicochemical, microbiological and sensory characteristics of set yoghurt. Advance Journal of Food Science and Technology, 5, 765–770.CrossRefGoogle Scholar
  64. Salvador, A., & Fiszman, S. M. (2004). Textural and sensory characteristics of whole and skimmed flavored set-type yogurt during long storage. Journal of Dairy Science, 87, 4033–4041.PubMedCrossRefGoogle Scholar
  65. Santillan-Urquiza, E., Mendez-Rojas, M. A., & Velez-Ruiz, J. F. (2017). Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT- Food Science and Technology, 80, 462–469.CrossRefGoogle Scholar
  66. Sengul, M., Erkaya, T., Sengul, M., & Yildiz, H. (2014). An investigation of the antioxidant activities and some physicochemical characteristics of strawberry added yogurt. Italian Journal of Food Science, 26, 235–242.Google Scholar
  67. Sodini, I., Lucas, A., Oliveira, M. N., Remeuf, F., & Corrieu, G. (2002). Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. Journal of Dairy Science, 85(10), 2479–2488.PubMedCrossRefGoogle Scholar
  68. Sonne, A., Gusch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT- Food Science and Technology, 59, 342–347.CrossRefGoogle Scholar
  69. Stokes, J. R., & Frith, W. J. (2008). Rheology of gelling and yielding soft matter systems. Soft Matter, 4, 113–1140.CrossRefGoogle Scholar
  70. Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225.CrossRefGoogle Scholar
  71. Tang, H. B., Qu, Y. F., Li, Y. P., & Dong, S. Q. (2018). Surface modification mechanism of cross-linking and acetylation, their influence on characteristics of high amylose corn starch. Journal of Food Science, 83(6), 1533–1541.PubMedCrossRefGoogle Scholar
  72. Teles, C. D., & Flores, S. H. (2007). The influence of additives on the rheological and sensory properties of nonfat yogurt. International Journal of Dairy Technology, 60(4), 270–276.CrossRefGoogle Scholar
  73. Tribby, D. (2008). Yogurt. In The sensory evaluation of dairy products (pp. 191–223). New York: Springer.CrossRefGoogle Scholar
  74. USDA-ERS (U.S. Department of Agriculture, Economic Research Service). (2018). Dairy data. Accessed on 8 Nov 2018 from
  75. USFDA (U.S. Food & Drug Administration). (2018). Code of Federal Regulations. Title 21. Part 131. Sec. 131.200. Yogurt. Available at: Date Accessed 21 March 2019.
  76. Wacher-Rodarte, C., Galvin, M. V., Farres, A., Gallardo, F., Marshall, V. M. E., & Garcia-Garibay, M. (1993). Yogurt production from reconstituted skim milk using different polymer and non-polymer forming starter cultures. The Journal of Dairy Research, 60, 247–254.CrossRefGoogle Scholar
  77. Yu, H.-Y., Wang, L., & McCarthy, K. L. (2016). Characterization of yogurts made with milk solids nonfat by rheological behavior and nuclear magnetic resonance spectroscopy. Journal of Food and Drug Analysis, 24, 804–812.PubMedCrossRefGoogle Scholar
  78. Zhao, L. L., Wang, X. L., Tian, Q., & Mao, X. Y. (2016). Effect of casein to whey protein ratios on the protein interactions and coagulation properties of low-fat yogurt. Journal of Dairy Science, 99, 7768–7775.PubMedCrossRefGoogle Scholar
  79. Zisu, B., & Shah, N. P. (2003). Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. Journal of Dairy Science, 86, 3405–3415.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Stephanie Clark
    • 1
  • Minto Michael
    • 2
    Email author
  • Karen A. Schmidt
    • 3
  1. 1.Department of Food Science and Human NutritionIowa State UniversityAmesUSA
  2. 2.School of Food ScienceWashington State UniversityPullmanUSA
  3. 3.Food Science InstituteKansas State UniversityManhattanUSA

Personalised recommendations