Semisolid Food Tribology

  • Helen S. JoynerEmail author
Part of the Food Engineering Series book series (FSES)


Tribology, or friction, lubrication, and wear behaviors between sliding countersurfaces, is a subset of rheology. The current consensus is that tribological behaviors of foods may be linked to friction-related food textural attributes. Because friction-related behaviors cannot be determined by traditional rheometry, tribological data may better correlate to friction-related textural attributes than rheological data (Malone ME, Appelqvist IAM, Norton IT, Food Hydrocoll 17:763–773, 2003a; Prakash S, Tan DDY, Chen J, Food Res Int 54:1627–1635, 2013). Indeed, semisolid foods are palated during consumption, and the motions of the oral surfaces during palating involve one surface sliding against another, generating friction-related sensations. However, textural attributes involve complex, temporal sensations (Prakash S, Tan DDY, Chen J Food Res Int 54:1627–1635, 2013; Hutchings JB, Lillford PJ, J Texture Stud 19:103–115, 1988; Lenfant F, Loret C, Pineau N, Hartmann C, Martin N, Appetite 52:659–667, 2009), making universal relationships between semisolid food tribological behaviors and sensory attributes difficult to determine. Furthermore, it can also be challenging to isolate the contribution of a single food component to semisolid food friction behaviors, particularly if the friction behaviors of the food change under oral conditions (e.g. the presence of saliva). While several basic relationships have been established, such as a direct relationship between sensory astringency from tannins and friction coefficient in the presence of saliva, much work is needed to fully understand the universal relationships among semisolid food composition and structure, instrumental friction measurements, and textural attributes.


  1. Adams, G. G., & Nosonovsky, M. (2000). Contact modeling — forces. Tribology International, 33, 431–442.CrossRefGoogle Scholar
  2. Akhtar, M., Stenzel, J., Murray, B. S., & Dickinson, E. (2005). Factors affecting the perception of creaminess of oil-in-water emulsions. Food Hydrocolloids, 19, 521–526.CrossRefGoogle Scholar
  3. Andrewes, P., Kelly, M., Vardhanabhuti, B., & Foegeding, E. A. (2011). Dynamic modelling of whey protein–saliva interactions in the mouth and relation to astringency in acidic beverages. International Dairy Journal, 21, 523–530.CrossRefGoogle Scholar
  4. Ares, G., et al. (2007). Influence of gelatin and starch on the instrumental and sensory texture of stirred yogurt. International Journal of Dairy Technology, 60, 263–269.CrossRefGoogle Scholar
  5. Beecher, J. W., Drake, M. A., Luck, P. J., & Foegeding, E. A. (2008). Factors regulating astringency of whey protein beverages. Journal of Dairy Science, 91, 2553–2560.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bongaerts, J. H. H., Fourtouni, K., & Stokes, J. R. (2007a). Soft-tribology: Lubrication in a compliant PDMS-PDMS contact. Tribology International, 40, 1531–1542.CrossRefGoogle Scholar
  7. Bongaerts, J. H. H., Rossetti, D., & Stokes, J. R. (2007b). The lubricating properties of human whole saliva. Tribology Letters, 27, 277–287.CrossRefGoogle Scholar
  8. Brennan, C. S., & Tudorica, C. M. (2008). Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilisation of barley beta-glucan, guar gum and inulin. International Journal of Food Science and Technology, 43, 824–833.CrossRefGoogle Scholar
  9. Brossard, N., Cai, H., Osorio, F., Bordeu, E., & Chen, J. (2016). “Oral” tribological study on the astringency sensation of red wines. Journal of Texture Studies, 47, 392–402.CrossRefGoogle Scholar
  10. Camacho, S., Liu, K., van der Linden, A., Stieger, M., & van de Velde, F. (2015). Formation, clearance and mouthfeel perception of oral coatings formed by emulsion-filled gels. Journal of Texture Studies, 46, 399–410.CrossRefGoogle Scholar
  11. Campbell, C. L., Foegeding, E. A., & van de Velde, F. (2017). A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement. Journal of Texture Studies, 48, 335–341.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cárdenas, M., et al. (2007a). Human saliva forms a complex film structure on alumina surfaces. Biomacromolecules, 8, 65–69.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cárdenas, M., Elofsson, U., & Lindh, L. (2007b). Salivary Mucin MUC5B could be an important component of in vitro pellicles of human saliva: An in situ ellipsometry and atomic force microscopy study. Biomacromolecules, 8, 1149–1156.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carpenter, G. H. (2013). The secretion, components, and properties of saliva. Annual Review of Food Science and Technology, 4, 267–276.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen, J. (2009). Food oral processing- a review. Food Hydrocolloids, 23, 1–25.CrossRefGoogle Scholar
  16. Chen, J., & Engelen, L. (2012). Food oral processing: Fundamentals of eating and sensory perception. (p. 320). West Sussex, UK: John Wiley & Sons.Google Scholar
  17. Chen, J., & Stokes, J. R. (2012). Rheology and tribology: Two distinctive regimes of food texture sensation. Trends in Food Science and Technology, 25, 4–12.CrossRefGoogle Scholar
  18. Chojnicka, A., De Jong, S., De Kruif, C. G., & Visschers, R. W. (2008a). Lubrication properties of protein aggregate dispersions in a soft contact. Journal of Agricultural and Food Chemistry, 56, 1274–1282.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Chojnicka, A., de Jong, S., de Kruif, C. G., & Visschers, R. W. (2008b). Lubrication properties of protein aggregate dispersions in a soft contact. Journal of Agricultural and Food Chemistry, 56, 1274–1282.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Chojnicka, A., Sala, G., DeKruif, C., & van de Velde, F. (2009). The interactions between oil droplets and gel matrix affect the lubrication properties of sheared emulsion-filled gels. Food Hydrocolloids, 23, 1038–1046.CrossRefGoogle Scholar
  21. Chojnicka-Paszun, A., & De Jongh, H. H. J. (2014). Friction properties of oral surface analogs and their interaction with polysaccharide/MCC particle dispersions. Food Research International, 62, 1020–1028.CrossRefGoogle Scholar
  22. Chojnicka-Paszun, A., de Jongh, H. H. J., & de Kruif, C. G. (2012). Sensory perception and lubrication properties of milk: Influence of fat content. International Dairy Journal, 26, 15–22.CrossRefGoogle Scholar
  23. Christersson, C. E., Lindh, L., & Arnebrant, T. (2000). Film-forming properties and viscosities of saliva substitutes and human whole saliva. European Journal of Oral Sciences, 108, 418–425.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Crockett, R. (2014). Friction and adhesion of polysaccharides. Tribology Online, 9, 154–163.CrossRefGoogle Scholar
  25. Crowley, S. V., et al. (2014). Heat stability of reconstituted milk protein concentrate powders. International Dairy Journal, 37, 104–110.CrossRefGoogle Scholar
  26. Davies, G. A., & Stokes, J. R. (2008). Thin film and high shear rheology of multiphase complex fluids. Journal of Non-Newtonian Fluid Mechanics, 148, 73–87.CrossRefGoogle Scholar
  27. Dawes, C. (1975). Circadian rhythms in the flow rate and composition of unstimulated and stimulated human submandibular saliva. The Journal of Physiology, 244, 535–548.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dawes, C. (1996). Factors influencing salivary flow rate and composition. Saliva Oral Health, 2, 27.Google Scholar
  29. De Hoog, E. H. A., Prinz, J. F., Huntjens, L., Dresselhuis, D. M., & Van Aken, G. A. (2006). Lubrication of oral surfaces by food emulsions: The importance of surface characteristics. Journal of Food Science, 71, E337–E341.CrossRefGoogle Scholar
  30. de Vicente, J., Stokes, J. R., & Spikes, H. A. (2005a). The frictional properties of Newtonian fluids in rolling-sliding soft-EHL contact. Tribology Letters, 20, 273–286.CrossRefGoogle Scholar
  31. de Vicente, J., Stokes, J. R., & Spikes, H. A. (2005b). Lubrication properties of non-adsorbing polymer solutions in soft elastohydrodynamic (EHD) contacts. Tribology International, 38, 515–526.CrossRefGoogle Scholar
  32. De Vicente, J., Stokes, J. R., & Spikes, H. A. (2006). Soft lubrication of model hydrocolloids. Food Hydrocolloids, 20, 483–491.CrossRefGoogle Scholar
  33. de Wijk, R. A., & Prinz, J. F. (2005). The role of friction in perceived oral texture. Food Quality and Preference, 16, 121–129.CrossRefGoogle Scholar
  34. de WIjk, R. A., & Prinz, J. F. (2006). Mechanisms underlying the role of friction in oral texture. Journal of Texture Studies, 37, 413–427.CrossRefGoogle Scholar
  35. de Wijk, R. A., & Prinz, J. F. (2007). Fatty versus creamy sensations for custard desserts, white sauces, and mayonnaises. Food Quality and Preference, 18, 641–650.CrossRefGoogle Scholar
  36. De Wijk, R. A., Prinz, J. F., Engelen, L., & Weenen, H. (2004). The role of alpha-amylase in the perception of oral texture and flavour in custards. Physiology & Behavior, 83, 81–91.CrossRefGoogle Scholar
  37. de Wijk, R. A., Wulfert, F., & Prinz, J. F. (2006a). Oral processing assessed by M-mode ultrasound imaging varies with food attribute. Physiology & Behavior, 89, 15–21.CrossRefGoogle Scholar
  38. De Wijk, R. A., Prinz, J. F., & Janssen, A. M. (2006b). Explaining perceived oral texture of starch-based custard desserts from standard and novel instrumental tests. Food Hydrocolloids, 20, 24–34.CrossRefGoogle Scholar
  39. Derler, S., Schrade, U., & Gerhardt, L.-C. (2007). Tribology of human skin and mechanical skin equivalents in contact with textiles. Wear, 263, 1112–1116.CrossRefGoogle Scholar
  40. Dickie, A. M., & Kokini, J. L. (1983). An improved model for food thickness from non-Newtonian fluid mechanics in the mouth. Journal of Food Science, 48, 57–61.CrossRefGoogle Scholar
  41. Drake, M. A., Chen, X. Q., Tamarapu, S., & Leenanon, B. (2000). Soy protein fortification affects sensory, chemical, and microbiological properties of dairy yogurts. Journal of Food Science, 65, 1244–1247.CrossRefGoogle Scholar
  42. Dresselhuis, D. M., et al. (2007). Tribology of o/w emulsions under mouth-like conditions: Determinants of friction. Food Biophysics, 2, 158–171.CrossRefGoogle Scholar
  43. Dresselhuis, D. M., de Hoog, E. H. A., Cohen Stuart, M. A., & van Aken, G. A. (2008a). Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocolloids, 22, 323–335.CrossRefGoogle Scholar
  44. Dresselhuis, D. M., de Hoog, E. H. A., Cohen Stuart, M. A., Vingerhoeds, M. H., & van Aken, G. A. (2008b). The occurrence of in-mouth coalescence of emulsion droplets in relation to perception of fat. Food Hydrocolloids, 22, 1170–1183.CrossRefGoogle Scholar
  45. Garrec, D., & Norton, I. T. (2012). The influence of hydrocolloid hydrodynamics on lubrication. Food Hydrocolloids, 26, 389–397.CrossRefGoogle Scholar
  46. Giasson, S., Israelachvili, J., & Yoshizawa, H. (1997). Thin film morphology and tribology study of mayonnaise. Journal of Food Science, 62, 640–652.CrossRefGoogle Scholar
  47. Gibbins, H. L., & Carpenter, G. H. (2013). Alternative mechanisms of astringency - what is the role of saliva? Journal of Texture Studies, 44, 364–375.CrossRefGoogle Scholar
  48. Gibbins, H. L., Yakubov, G. E., Proctor, G. B., Wilson, S., & Carpenter, G. H. (2014). What interactions drive the salivary mucosal pellicle formation? Colloids and Surfaces. B, Biointerfaces, 120, 184–192.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Godoi, F. C., Bhandari, B. R., & Prakash, S. (2017). Tribo-rheology and sensory analysis of a dairy semi-solid. Food Hydrocolloids, 70, 240–250.CrossRefGoogle Scholar
  50. Gong, J., & Osada, Y. (1998). Gel friction: A model based on surface repulsion and adsorption. The Journal of Chemical Physics, 109, 8062–8068.CrossRefGoogle Scholar
  51. Greene, G. W., et al. (2013). Lubrication and wear protection of natural (bio)systems. Polymer Adhesion, Friction, and Lubrication, 83–133. Scholar
  52. Hayashi, R., et al. (2002). A novel handy probe for tongue pressure measurement. The International Journal of Prosthodontics, 15, 385.PubMedGoogle Scholar
  53. Huc, D., Michon, C., Bedoussac, C., & Bosc, V. (2016). Design of a multi-scale texture study of yoghurts using rheology, and tribology mimicking the eating process and microstructure characterisation. International Dairy Journal, 61, 126–134.CrossRefGoogle Scholar
  54. Humphrey, S. P., & Williamson, R. T. (2001). A review of saliva: Normal composition, flow, and function. The Journal of Prosthetic Dentistry, 85, 162–169.PubMedCrossRefGoogle Scholar
  55. Isleten, M., & Karagul-Yuceer, Y. (2006). Effects of dried dairy ingredients on physical and sensory properties of nonfat yogurt. Journal of Dairy Science, 89, 2865–2872.PubMedCrossRefGoogle Scholar
  56. Joyner (Melito), H. S., & Damiano, H. (2015). Influence of various hydrocolloids on cottage cheese cream dressing stability. International Dairy Journal, 51, 24–33.CrossRefGoogle Scholar
  57. Joyner (Melito), H. S., Pernell, C. W., & Daubert, C. R. (2014a). Impact of formulation and saliva on acid milk gel friction behavior. Journal of Food Science, 79, E867.CrossRefGoogle Scholar
  58. Joyner (Melito), H. S., Pernell, C. W., & Daubert, C. R. (2014b). Impact of oil-in-water emulsion composition and preparation method on emulsion physical properties and friction behaviors. Tribology Letters, 56, 143–160.CrossRefGoogle Scholar
  59. Joyner (Melito), H. S., Pernell, C. W., & Daubert, C. R. (2014c). Beyond surface selection: The impact of different methodologies on tribological measurements. Journal of Food Engineering, 134, 45–58.CrossRefGoogle Scholar
  60. Joyner (Melito), H. S., Pernell, C. W., & Daubert, C. R. (2014d). Impact of parameter settings on normal force and gap height during tribological measurements. Journal of Food Engineering, 137, 51–63.CrossRefGoogle Scholar
  61. Kokini, J. L. (1987). The physical basis of liquid food texture and texture-taste interactions. Journal of Food Engineering, 6, 51–81.CrossRefGoogle Scholar
  62. Kokini, J. L., & Cussler, E. L. (1983). Predicting the texture of liquid and melting semi-solid foods. Journal of Food Science, 48, 1221–1225.CrossRefGoogle Scholar
  63. Krzeminski, A., Prell, K. A., Busch-Stockfisch, M., Weiss, J., & Hinrichs, J. (2014). Whey protein–pectin complexes as new texturising elements in fat-reduced yoghurt systems. International Dairy Journal, 36, 118–127.CrossRefGoogle Scholar
  64. Kupirovič, U. P., Elmadfa, I., Juillerat, M.-A., & Raspor, P. (2017). Effect of saliva on physical food properties in fat texture perception. Critical Reviews in Food Science and Nutrition, 57, 1061–1077.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Laguna, L., Farrell, G., Bryant, M., Morina, A., & Sarkar, A. (2017). Relating rheology and tribology of commercial dairy colloids to sensory perception. Food & Function, 8, 563–573.CrossRefGoogle Scholar
  66. Laiho, S., Williams, R. P. W., Poelman, A., Appelqvist, I., & Logan, A. (2017). Effect of whey protein phase volume on the tribology, rheology and sensory properties of fat-free stirred yoghurts. Food Hydrocolloids, 67, 166–177.CrossRefGoogle Scholar
  67. Li, Y., Joyner, H. S., Carter, B. G., & Drake, M. A. (2018). Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk. Journal of Dairy Science, 101, 2941.PubMedCrossRefGoogle Scholar
  68. Lindh, L., Glantz, P.-O., Isberg, P.-E., & Arnebrant, T. (2001). An in vitro study of initial adsorption from human parotid and submandibular/sublingual resting saliva at solid/liquid interfaces. Biofouling, 17, 227–239.CrossRefGoogle Scholar
  69. Lindh, L., Glantz, P.-O., Carlstedt, I., Wickström, C., & Arnebrant, T. (2002a). Adsorption of MUC5B and the role of mucins in early salivary film formation. Colloids and Surfaces. B, Biointerfaces, 25, 139–146.CrossRefGoogle Scholar
  70. Lindh, L., Glantz, P.-O., Strömberg, N., & Arnebrant, T. (2002b). On the adsorption of human acidic proline-rich proteins (PRP-1 and PRP-3) and Statherin at solid/liquid interfaces. Biofouling, 18, 87–94.CrossRefGoogle Scholar
  71. Liu, K., Stieger, M., Van Der Linden, E., & Van De Velde, F. (2015). Fat droplet characteristics affect rheological, tribological and sensory properties of food gels. Food Hydrocolloids, 44, 244–259.CrossRefGoogle Scholar
  72. Liu, K., Stieger, M., van der Linden, E., & van de Velde, F. (2016a). Tribological properties of rice starch in liquid and semi-solid food model systems. Food Hydrocolloids, 58, 184–193.CrossRefGoogle Scholar
  73. Liu, K., Tian, Y., Stieger, M., Van der Linden, E., & Van de Velde, F. (2016b). Evidence for ball-bearing mechanism of microparticulated whey protein as fat replacer in liquid and semi-solid multi-component model foods. Food Hydrocolloids, 52, 403–414.CrossRefGoogle Scholar
  74. Liu, K., Stieger, M., van der Linden, E., & van de Velde, F. (2016c). Effect of microparticulated whey protein on sensory properties of liquid and semi-solid model foods. Food Hydrocolloids, 60, 186–198.CrossRefGoogle Scholar
  75. Loria, K. (2017). New trends are stirring up the yogurt segment. Food Dive. Available at: Accessed 8 Oct 2018.
  76. Lu, X., Khonsari, M. M., & Gelinck, E. R. M. (2006). The stribeck curve: Experimental results and theoretical prediction. Journal of Tribology, 128, 789–794.CrossRefGoogle Scholar
  77. Macakova, L., Yakubov, G. E., Plunkett, M. A., & Stokes, J. R. (2010). Influence of ionic strength changes on the structure of pre-adsorbed salivary films. A response of a natural multi-component layer. Colloids and Surfaces. B, Biointerfaces, 77, 31–39.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Malone, M. E., Appelqvist, I. A. M., & Norton, I. T. (2003a). Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocolloids, 17, 763–773.CrossRefGoogle Scholar
  79. Malone, M., Appelqvist, I. A., & Norton, I. (2003b). Oral behaviour of food hydrocolloids and emulsions. Part 1. Lubrication and deposition considerations. Food Hydrocolloids, 17, 763–773.CrossRefGoogle Scholar
  80. Meena, G. S., Singh, A. K., Panjagari, N. R., & Arora, S. (2017). Milk protein concentrates: Opportunities and challenges. Journal of Food Science and Technology. Scholar
  81. Mordor Intelligence. Yogurt market - segmented by application and geography – growth, trends, and forecast (2018–2023). (2018). Available at: Accessed 8 Oct 2018.
  82. Morell, P., Chen, J., & Fiszman, S. (2017). The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts. Food & Function, 8, 545–553.CrossRefGoogle Scholar
  83. Myant, C., Spikes, H. A., & Stokes, J. R. (2010a). Influence of load and elastic properties on the rolling and sliding friction of lubricated compliant contacts. Tribology International, 43, 55–63.CrossRefGoogle Scholar
  84. Myant, C., Fowell, M., Spikes, H. A., Stokes, J. R., & Chang, L. (2010b). An investigation of lubricant film thickness in sliding compliant contacts. Tribology Transactions, 53, 684–694.CrossRefGoogle Scholar
  85. Nguyen, P. T. M., Nguyen, T. A. H., Bhandari, B., & Prakash, S. (2015). Comparison of solid substrates to differentiate the lubrication property of dairy fluids by tribological measurement. Journal of Food Engineering, 185, 1–8.CrossRefGoogle Scholar
  86. Nguyen, P. T. M., Bhandari, B., & Prakash, S. (2016). Tribological method to measure lubricating properties of dairy products. Journal of Food Engineering, 168, 27–34.CrossRefGoogle Scholar
  87. Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids, 72, 90–104.CrossRefGoogle Scholar
  88. Ningtyas, D. W., Bhandari, B., Bansal, N., & Prakash, S. (2017). A tribological analysis of cream cheeses manufactured with different fat content. International Dairy Journal, 73, 155–165.CrossRefGoogle Scholar
  89. Pascua, Y., Koç, H., & Foegeding, E. A. (2013). Food structure: Roles of mechanical properties and oral processing in determining sensory texture of soft materials. Current Opinion in Colloid & Interface Science, 18, 324–333.CrossRefGoogle Scholar
  90. Payan, Y., & Perrier, P. (1997). Synthesis of V-V sequences with a 2D biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Communication, 22, 185–205.CrossRefGoogle Scholar
  91. Pettersson, U., & Jacobson, S. (2003). Influence of surface texture on boundary lubricated sliding contacts. Tribology International, 36, 857–864.CrossRefGoogle Scholar
  92. Prakash, S., Tan, D. D. Y., & Chen, J. (2013). Applications of tribology in studying food oral processing and texture perception. Food Research International, 54, 1627–1635.CrossRefGoogle Scholar
  93. Prepared Foods. Comax: Yogurt trends, preferences. (2018). Available at: Accessed 8 Oct 2018.
  94. Prinz, J. F., & Lucas, P. W. (2000). Saliva tannin interactions. Journal of Oral Rehabilitation, 27, 991–994.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Prinz, J. F., de Wijk, R. A., & Huntjens, L. (2007). Load dependency of the coefficient of friction of oral mucosa. Food Hydrocolloids, 21, 402–408.CrossRefGoogle Scholar
  96. Ranc, H., et al. (2006). Friction coefficient and wettability of oral mucosal tissue: Changes induced by a salivary layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276, 155–161.CrossRefGoogle Scholar
  97. Rossetti, D., Bongaerts, J. H. H., Wantling, E., Stokes, J. R., & Williamson, A. M. (2009). Astringency of tea catechins: More than an oral lubrication tactile percept. Food Hydrocolloids, 23, 1984–1992.CrossRefGoogle Scholar
  98. Saint-Eve, A., Lévy, C., Martin, N., & Souchon, I. (2006). Influence of proteins on the perception of flavored stirred yogurts. Journal of Dairy Science, 89, 922–933.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14, 151–159.CrossRefGoogle Scholar
  100. Schipper, R. G., Silletti, E., & Vingerhoeds, M. H. (2007). Saliva as research material: Biochemical, physicochemical and practical aspects. Archives of Oral Biology, 52, 1114–1135.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Selway, N., & Stokes, J. R. (2013). Insights into the dynamics of oral lubrication and mouthfeel using soft tribology: Differentiating semi-fluid foods with similar rheology. Food Research International. Scholar
  102. Shi, L., & Caldwell, K. D. (2000). Mucin adsorption to hydrophobic surfaces. Journal of Colloid and Interface Science, 224, 372–381.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sonne, A., Busch-Stockfisch, M., Weiss, J., & Org Hinrichs, J. (2014). Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT - Food Science and Technology. Scholar
  104. Steele, C. M., & Van Lieshout, P. (2009). Tongue movements during water swallowing in healthy young and older adults. Journal of Speech, Language, and Hearing Research, 52, 1255–1267.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Stokes, J. R. (2012). ‘Oral’Tribology. In Food oral processing: Fundamentals of eating and sensory perception (p. 265). West Sussex, UK: Blackwell Publishing Ltd.Google Scholar
  106. Stokes, J. R., & Davies, G. A. (2007). Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology, 44, 141–160.PubMedPubMedCentralGoogle Scholar
  107. Stokes, J. R., Boehm, M. W., & Baier, S. K. (2013). Oral processing, texture and mouthfeel: From rheology to tribology and beyond. Current Opinion in Colloid & Interface Science. Scholar
  108. Tribby, D. (2008). Yogurt. In The sensory evaluation of dairy products (pp. 191–223). New York, NY: Springer.CrossRefGoogle Scholar
  109. Tsui, S., Tandy, J., Myant, C., Masen, M., & Cann, P. M. (2016). Friction measurements with yoghurt in a simulated tongue-palate contact. Biotribology, 8, 1–11.CrossRefGoogle Scholar
  110. Van Aken, G. A., Vingerhoeds, M. H., & De Hoog, E. H. A. (2007). Food colloids under oral conditions. Current Opinion in Colloid and Interface Science. Scholar
  111. Vardhanabhuti, B., Cox, P. W., Norton, I. T., & Foegeding, E. A. (2011). Lubricating properties of human whole saliva as affected by β-lactoglobulin. Food Hydrocolloids, 25, 1499–1506.CrossRefGoogle Scholar
  112. Yakubov, G. E., Branfield, T. E., Bongaerts, J. H. H., & Stokes, J. R. (2015a). Tribology of particle suspensions in rolling-sliding soft contacts. Biotribology, 3, 1–10.CrossRefGoogle Scholar
  113. Yakubov, G. E., et al. (2015b). Lubrication of starch in ionic liquid-water mixtures: Soluble carbohydrate polymers form a boundary film on hydrophobic surfaces. Carbohydrate Polymers, 133, 507–516.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Yakubov, G. E., Macakova, L., Wilson, S., Windust, J. H. C., & Stokes, J. R. (2015c). Aqueous lubrication by fractionated salivary proteins: Synergistic interaction of mucin polymer brush with low molecular weight macromolecules. Tribology International, 89, 34–45.CrossRefGoogle Scholar
  115. Ye, A., Streicher, C., & Singh, H. (2011). Interactions between whey proteins and salivary proteins as related to astringency of whey protein beverages at low pH. Journal of Dairy Science, 94, 5842–5850.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zhang, B., et al. (2017). Tribology of swollen starch granule suspensions from maize and potato. Carbohydrate Polymers, 155, 128–135.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zinoviadou, K. G., Janssen, A. M., & De Jongh, H. H. J. (2008). Tribological properties of neutral polysaccharide solutions under simulated oral conditions. Journal of Food Science, 73, E88.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Food ScienceUniversity of IdahoMoscowUSA

Personalised recommendations