Rheological Testing for Semisolid Foods: Traditional Rheometry

  • Judith K. WhaleyEmail author
  • Catherine Templeton
  • Mohammad Anvari
Part of the Food Engineering Series book series (FSES)


A review of the literature on the rheology of semisolid foods such as yogurt, reveals significant challenges in acquiring data which adequately reflects the material characteristics of the food. These challenges are due to a number of factors, including the disruption of the structure of the semisolid food during loading on rheology test equipment, the instability of many semisolid foods over time, and the tendency of many semisolid foods to exhibit macroscopic phase separation. Due to these challenges, empirical testing methods are often used instead of fundamental rheology tests, which limits comparison of data. Despite these inherent difficulties, reliable and useful rheology data can be collected on these types of foods if appropriate techniques are used. This data can provide critical information about the food structure, texture, and processing behavior and in some cases can be used to develop predictive models which enable food formulators to more rapidly design semisolid foods with desired behaviors.


  1. Afonso, I. M., & Maia, J. M. (2000). Rheological monitoring of structure development and rebodying of set-style yoghurt. Applied Rheology, 10, 73–79.CrossRefGoogle Scholar
  2. Barnes, H. A. (2000). A handbook of elementary rheology. Dyfed, Wales: University of Wales.Google Scholar
  3. Barnes, H. A., & Walters, K. (1985). The yield stress myth. Rheologica Acta, 24, 324–326.CrossRefGoogle Scholar
  4. Barringer, S. A., et al. (1998). On-line prediction of Bostwick consistency from pressure differential in pipe flow for ketchup and related tomato products. Journal of Food Processing & Preservation, 22, 211–220.CrossRefGoogle Scholar
  5. Bongenaar, J. J. T., Kossen, N. W. F., Metz, B., & Meijboom, F. (1973). A method for characterizing the rheological properties of viscous fermentation broths. Biotechnology and Bioengineering, 15, 201–206.CrossRefGoogle Scholar
  6. Bourne, M. (2002). Food texture and viscosity: Concept and measurement. San Diego: Academicn Press.CrossRefGoogle Scholar
  7. Briggs, J. L., Steffe, J. F., & Ustunol, Z. (1996). Vane method to evaluate the yield stress of frozen ice cream. Journal of Dairy Science, 79, 527–553.CrossRefGoogle Scholar
  8. Brown, M. (2010). Sensory characteristics and classification of commercial and experimental plain yogurts. M. S. thesis.:University of Delware.Google Scholar
  9. Dannenberg, F., & Kessler, H. G. (1988). Effect of denaturation of β-lactoglobulin on texture properties of set-style nonfat yoghurt. 1. Syneresis. Milchwissenschaft, 43, 632–635.Google Scholar
  10. Doublier, J. L., & Durand, S. (2008). A rheological characterization of semi-solid dairy systems. Food Chemistry, 108(4), 1169–1175.CrossRefGoogle Scholar
  11. Ferry, J. D. (1980). Viscoelastic properties of polymers. Canada: Wiley.Google Scholar
  12. Foegeding, E. A. B. J., Drake, M. A., & Daubert, C. R. (2003). Sensory and mechanical aspects of cheese texture. International Dairy Journal, 13(8), 585–591.CrossRefGoogle Scholar
  13. Gunasekaran, S., & Ak, M. M. (2003). Cheese rheology and texture. Boca Raton: CRC Press.Google Scholar
  14. Gunasekaran, S., Ko, S., & Xiao, L. (2007). Use of whey protein for encapsulation and controlled delivery applications. Journal of Food Engineering, 83, 31–40.CrossRefGoogle Scholar
  15. Halmos, A. L., & Tiu, C. (1981). Liquid foodstuffs exhibiting yield stress and shear degradability. Journal of Texture Studies, 12, 39–46.CrossRefGoogle Scholar
  16. Haque, A., Richardson, R. K., & Morris, E. R. (2001). Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocolloids, 15, 593–602.CrossRefGoogle Scholar
  17. Harris, P. (1990). Food gels. London: Elsevier Applied Science.CrossRefGoogle Scholar
  18. Karagül-Yüceer, Y., & Drake, M. A. (2013). Sensory analysis of yogurt. In Manufacturing yogurt and fermented milks (pp. 353–367). UK: Blackwell Publishing.CrossRefGoogle Scholar
  19. Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterization of semi-solid foods. Food Research International, 39(3), 265–276.CrossRefGoogle Scholar
  20. Krieger, I. M., & Doughherty, T. J. (1959). A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions. Society of Rheology, 3, 137–152.CrossRefGoogle Scholar
  21. Lam, S., Velikov, K., & Veliv, O. (2014). Pickering stabilization of foams and emulsions with particles of biological origin. Current Opinion in Colloid and Interface Science, 19, 490–500.CrossRefGoogle Scholar
  22. Lankes, H., Ozer, B. H., & Robinson, R. K. (1998). The effect of elevated milk solids and incubation temperature on the physical properties of natural yoghurt. Milchwissenschaft, 53(9), 510–513.Google Scholar
  23. Lee, W. J., & Lucey, J. A. (2006). Impact of gelation conditions and structural breakdown on the physical and sensory properties of stirred yogurts. Journal of Dairy Science, 89, 2374–2385.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136.CrossRefGoogle Scholar
  25. Lucey, J. A. (2004). Cultured dairy products: An overview of their gelation and texture properties. International Journal of Dairy Technology, 57, 77–84.CrossRefGoogle Scholar
  26. Lucey, J. A., Munro, P. A., & Singh, H. (1999). Effects of heat treatment and whey protein addition on the rheological properties and structure of acid skim milk gels. International Dairy Journal, 9, 275–279.CrossRefGoogle Scholar
  27. Lucey, J. A., Teo, C. T., Munro, P. A., & Singh, H. (1997). Rheological properties at small (dynamic) and large (yield) deformations of acid gels made from heated milk. The Journal of Dairy Research, 64, 591–600.CrossRefGoogle Scholar
  28. Muir, D., & Hunter, W. A. (1992). Sensory evaluation of fermented milks: Vocabulary development and the relations between sensory properties and composition and between acceptability and sensory properties. International Journal of Dairy Technology, 45, 73–80.CrossRefGoogle Scholar
  29. Norn, V. (2015). Emulsifiers in food technology (2nd ed.). Chichester: Wiley.Google Scholar
  30. Owen, S. R., Tung, M. A., & Paulson, A. T. (1992). Thermorheological studies of food polymer dispersions. Journal of Food Engineering, 16, 39–53.CrossRefGoogle Scholar
  31. Ozcan, T. (2013). Determination of yogurt quality by using rheological and textural parameters (pp. 118–122). Singapore: IACSIT Press.Google Scholar
  32. Papanastasiou, T. C. (1987). Flows of materials with yield. Journal of Rheology, 31, 385–404.CrossRefGoogle Scholar
  33. Ramaswamy, H. S., & Basak, S. (1991). Rheology of stirred yogurts. Journal of Texture Studies, 22(2), 231–241.CrossRefGoogle Scholar
  34. Rao, M. A. (1999). Rheological behavior of processed fluid and semisolid foods. In Rheology of fluid and semisolid foods: Principles and applications (pp. 223–338). New York: Springer.Google Scholar
  35. Rao, M. A. (2006). Influence of food microstructure on food rheology. In Understanding and controlling the microstructure of complex foods (pp. 411–422). Cambridge: Woodhead Publishing Ltd.Google Scholar
  36. Rao, M. A., & Cooley, H. J. (1993). Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. Journal of Food Science, 58, 876–879.CrossRefGoogle Scholar
  37. Rao, M. A., & Steffe, J. F. (1992). Viscoelastic properties of foods. London: Elsevier Applied Science.Google Scholar
  38. Reilly, D. L. (1997). Food rheology. In Chemical engineering in the food industry (pp. 195–232). London: Springer Science + Business Media.CrossRefGoogle Scholar
  39. Renard, D., van deVelde, F., & Visschers, R. W. (2006). The gap between food gel structure, texture and perception. Food Hydrocolloids, 20, 423–431.CrossRefGoogle Scholar
  40. Sanchez, C., et al. (1994). Rheological and textural behavior of double cream cheese. II: Effect of curd cooling rate. Journal of Food Engineering, 23(4), 595–608.CrossRefGoogle Scholar
  41. Skriver, A. (1995). Characterization of stirred yoghurt by rheology, microscopy and sensory analysis. Dissertation. s.l.:The Royal Veterinary and Agricultural University.Google Scholar
  42. Skriver, A., Roemer, H., & Qvist, K. B. (1993). Rheological characterization of stirred yoghurt viscometry. Journal of Texture Studies, 24, 185–198.CrossRefGoogle Scholar
  43. Song, K. W., Kuk, H. A., & Chang, S. G. (2006). Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior. Korea-Australia Rheology Journal, 18(2), 67–81.Google Scholar
  44. Spaans, R. D., & Williams, M. C. (1995). Letter to the editor: At last, a true liquid-phase yield stress. Journal of Rheology, 39, 241–246.CrossRefGoogle Scholar
  45. Steeneken, P. A. (1989). Rheological properties of aqueous suspensions of swollen starch granules. Carbohydrate Polymers, 11, 23–42.CrossRefGoogle Scholar
  46. Steffe, J. F. (1996). Rheological methods in food process engineering. East Lansing: Freeman Press.Google Scholar
  47. Tadros, T. F. (2013). Emulsion formation and stability (1st ed.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.CrossRefGoogle Scholar
  48. Tárrega, A., Durán, L., & Costell, E. (2004). Flow behavior of semi-solid dairy desserts. Effect of temperature. International Dairy Journal, 14(4), 345–353.CrossRefGoogle Scholar
  49. Tattiyakul, J. (1997). Studies on granule growth kinetics and characteristics of tapioca starch dispersion during gelatinization using particle size analysis and rheological methods. S.l.:Cornell University.Google Scholar
  50. Tsardaka, E. D. (1990). Viscoelastic properties and compaction behavior of pharmaceutical particulate materials. s.l.:University of Bath.Google Scholar
  51. Tunick, M. H. (2011). Small-strain dynamic rheology of food protein networks. Journal of Agricultural and Food Chemistry, 59, 1481–1486.PubMedCrossRefPubMedCentralGoogle Scholar
  52. van Marle, M. E., van den Ende, D., de Kruif, C. G., & Mellema, J. (1999). Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology, 43, 1643–1662.CrossRefGoogle Scholar
  53. Winter, H. H., & Mours, M. (1997). Rheology of polymers near liquid-solid transitions. Advances in Polymer Science, 134, 165–234.CrossRefGoogle Scholar
  54. Yoo, B., Rao, M. A., & Steffe, J. F. (1995). Yield stress of food dispersions with the vane method at controlled shear rate and shear stress. Journal of Texture Studies, 26, 1–10.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Judith K. Whaley
    • 1
    Email author
  • Catherine Templeton
    • 1
  • Mohammad Anvari
    • 1
  1. 1.Tate & Lyle, PLCHoffman EstatesUSA

Personalised recommendations