Learning-Based Metal Artifacts Removal in Head CT

  • Shipeng XieEmail author
  • Qian Chen
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 75)


Due to the presence of metal fillers, metal artifacts have always affected the effectiveness of computed tomography (CT) inspection. Moreover, metal artifact reduction (MAR) is still one of the major problems in clinical head CT. In order to reduce the metal artifacts in the dental region of CT images, we develop an artifact removal algorithm based on a deep convolutional neural network (CNN). The proposed approach consists of two-step. Firstly, we build a database consisting with and without artifact head CT image. In this step, a deformable image registration (DIR) method is implemented to preprocess data before CNN training. Therefore, pairs of with and without artifacts data are acquired from our dataset. Secondly, in the CNN training step, we build a simple 17-layer CNN architecture to learning the metal artifacts. Experimental results show the greater MAR capability of the proposed method. The computed tomography values, PSNR, and SSIM of ROIs also show the evident improvement.


Metal artifacts Beam hardening Mandible CNN DIR 


  1. 1.
    Feng, Z., Shanglian, B., Pengxiang, J., Bin, Y.: Scattering correction method for panel detector based cone beam computed tomography system. Chin. Phys. B 19(8), 087802 (2010)CrossRefGoogle Scholar
  2. 2.
    Karimi, S., Cosman, P., Wald, C., Martz, H.: Segmentation of artifacts and anatomy in CT metal artifact reduction. Med. Phys. 39(10), 5857 (2012)CrossRefGoogle Scholar
  3. 3.
    Gjesteby, L., Man, B.D., Jin, Y., Paganetti, H., Verburg, J., Giantsoudi, D., et al.: Metal artifact reduction in CT: where are we after four decades? IEEE Access 4(99), 5826–5849 (2016)CrossRefGoogle Scholar
  4. 4.
    Huang, J.Y., Kerns, J.R., Nute, J.L., Liu, X., Balter, P.A., Stingo, F.C., et al.: An evaluation of three commercially available metal artifact reduction methods for CT imaging. Phys. Med. Biol. 60(3), 1047–1067 (2015)CrossRefGoogle Scholar
  5. 5.
    Andre, M., Najla, M., Katrien, V.S., Johan, N., Breckon, T.P.: An experimental survey of metal artefact reduction in computed tomography. J. X-ray Sci. Technol. 21(2), 193–226 (2013)Google Scholar
  6. 6.
    Zhang, Y., Yu, H.: Convolutional neural network based metal artifact reduction in X-ray computed tomography. IEEE Trans. Med. Imaging 37(6), 1370–1381 (2018)CrossRefGoogle Scholar
  7. 7.
    Jennings, Robert J.: A method for comparing beam-hardening filter materials for diagnostic radiology. Med. Phys. 15(4), 588 (1988)CrossRefGoogle Scholar
  8. 8.
    Kalender, W.A., Hebel, R., Ebersberger, J.: Reduction of CT artifacts caused by metallic implants. Radiology 164(2), 576–577 (1987)CrossRefGoogle Scholar
  9. 9.
    Beister, M., Kolditz, D., Kalender, W.A.: Iterative reconstruction methods in X-ray CT. Physica Med. 28(2), 94–108 (2012)CrossRefGoogle Scholar
  10. 10.
    Kadoya, N., Fujita, Y., Katsuta, Y., Dobashi, S., Takeda, K., Kishi, K., et al.: Evaluation of various deformable image registration algorithms for thoracic images. J. Radiat. Res. 55(1), 175–182 (2014)CrossRefGoogle Scholar
  11. 11.
    Kirby, N., Chuang, C., Ueda, U., Pouliot, J.: The need for application-based adaptation of deformable image registration. Med. Phys. 40(1), 011702 (2012)CrossRefGoogle Scholar
  12. 12.
    García-Mollá, Rafael, Marco-Blancas, N.D., Bonaque, J., Vidueira, L., López-Tarjuelo, Juan, Perez-Calatayud, José: Validation of a deformable image registration produced by a commercial treatment planning system in head and neck. Physica Med. 31(3), 219–223 (2015)CrossRefGoogle Scholar
  13. 13.
    Guo, C., Ngo, D., Ahadi, S., Doub, W.H.: Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol. 50(6), 918 (2011)CrossRefGoogle Scholar
  14. 14.
    Zambrano, V., Furtado, H., Fabri, D., Lutgendorf-Caucig, C., Gora, J., Stock, M., et al.: Performance validation of deformable image registration in the pelvic region. J. Radiat. Res. 54(Suppl 1), i120–i128 (2013)CrossRefGoogle Scholar
  15. 15.
    Weistrand, O., Svensson, S.: The anaconda algorithm for deformable image registration in radiotherapy. Med. Phys. 42(1), 40–53 (2015)CrossRefGoogle Scholar
  16. 16.
    Kadoya, N., Nakajima, Y., Saito, M., Miyabe, Y., Kurooka, M., Kito, S., et al.: Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int. J. Radiat. Oncol. Biol. Phys. 96(2) (2016)Google Scholar
  17. 17.
    Forsberg, D.: Robust image registration for improved clinical efficiency: using local structure analysis and model-based processing. Linköping Studies in Science and Technology (Ph.D. thesis). Linköping University, Sweden (2013)Google Scholar
  18. 18.
    Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Med. Imaging 26(7), 3142–3155MathSciNetCrossRefGoogle Scholar
  19. 19.
    Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2012)Google Scholar
  20. 20.
    Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Computer Vision and Pattern Recognition. IEEE (2014)Google Scholar
  21. 21.
    Vedaldi, A., Lenc, K.: MatConvNet—convolutional neural networks for MATLAB (2014)Google Scholar
  22. 22.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4) (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.College of Telecommunications & Information EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations