Tensile Properties of Carbon Fiber Reinforced Polymer Matrix Composite

  • Eva KormanikovaEmail author
  • Milan Zmindak
  • Peter Sabol
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 75)


The paper deals with determination of material characteristics of carbon/epoxy composite due to numerical homogenization and experimental investigation. Within numerical homogenization there is used periodic microstructure model without and with pores. The numerical homogenization and simulation of experiment are provided in FEM program ANSYS. In this study, unidirectional quasi-static tensile test on carbon/epoxy composite laminate is carried out to investigate its material properties. The quasi-static tensile tests were conducted by INOVA FU 160 machine. The extensometer EPSILON 3542 was installed to measure the deformation of the specimen. The experiment was controlled also using video extensometer measuring system ARAMIS. The results obtained from numerical and experimental investigation were compared.


Tensile properties Carbon fiber Polymer matrix Composite material 



This work was supported by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences under Projects VEGA 1/0374/19 and 1/0078/16. The authors declare that they have no conflict of interest.


  1. 1.
    Sladek, J., Novak, P., Bishay, P.L., Sladek, V.: Effective properties of cement-based porous piezoelectric ceramic composites. Constr. Build. Mater. 190, 1208–1214 (2018)CrossRefGoogle Scholar
  2. 2.
    Murcinkova, Z., Novak, P., Kompis, V., Zmindak, M.: Homogenization of the finite-length fibre composite materials by boundary meshless type methods. Arch. Appl. Mech. 88(5), 789–804 (2018)CrossRefGoogle Scholar
  3. 3.
    Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds.) Plasticity Today: Modelling, Methods and Applications, pp. 279–310. Elsevier Applied Science Publishers, London (1985)Google Scholar
  4. 4.
    Feyel, F., Chaboche, J.-L.: FE2 multiscale approach for modeling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)CrossRefGoogle Scholar
  5. 5.
    Terada, K., Kikuchi, N.: A class of general algorithms for multi-scale analysis of heterogeneous media. Comput. Methods Appl. Mech. Eng. 190, 5427–5464 (2001)CrossRefGoogle Scholar
  6. 6.
    Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 27, 37–48 (2001)CrossRefGoogle Scholar
  7. 7.
    Miehe, C., Koch, A.: Computational micro-to-macro transition of discretized microstructures undergoing small strain. Arch. Appl. Mech. 72, 300–317 (2002)CrossRefGoogle Scholar
  8. 8.
    Barbero, E.J.: Finite Element Analysis of Composite Materials. CRC Press, USA (2007)Google Scholar
  9. 9.
    Barretta, R., Luciano, R., Willis, J.R.: On torsion of random composite beams. Compos. Struct. 132, 915–922 (2015)CrossRefGoogle Scholar
  10. 10.
    Lapcik, L., et al.: Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites. Compos. Part B 141, 92–99 (2018)CrossRefGoogle Scholar
  11. 11.
    Chen, W., Meng, Q., Hao, H., Ciu, J., Shi, Y.: Quasi-static and dynamic tensile properties of fiberglass/epoxy laminate sheet. Constr. Build. Mater. 143, 247–259 (2017)CrossRefGoogle Scholar
  12. 12.
    Chen, W., Hao, H., Jong, M., Ciu, J., Shi, Y., Chen, L.: Quasi-static and dynamic tensile properties of basalt fibre reinforced polymer. Compos. Part B 125, 123–133 (2017)CrossRefGoogle Scholar
  13. 13.
    Kormanikova, E., Kotrasova, K.: Multiscale modeling of liquid storage laminated composite cylindrical tank under seismic load. Compos. Part B 146, 189–197 (2018)CrossRefGoogle Scholar
  14. 14.
    Vorel, J., Urbanová, S., Grippon, E., Jandejsek, I., Maršálková, M., Šejnoha, M.: Multi-scale modeling of textile reinforced ceramic composites. Ceram. Eng. Sci. Proc. 34(10), 233–245 (2014)Google Scholar
  15. 15.
    STN EN ISO 527-4: plastics. Determination of tensile properties. Part 4: test conditions for isotropic and orthotopic fibre-reinforced plastic composites (ISO 527-4:1997)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Technical University of KosiceKosiceSlovakia
  2. 2.University of ZilinaŽilinaSlovakia

Personalised recommendations