Advertisement

P-FEM Based on Meshless Trial and Test Functions: Part I-MLS Approximation

  • Xiang LiEmail author
  • Wei Guo
  • Xiaoping Chen
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 75)

Abstract

In this paper the essential features of the P-FEM methods for solving linear elliptic equations using variational principles was addressed from the point of view of approximation space enrichment using meshless approximation. As meshless trial and test functions, MLS approximation was used as generalized p-version convergence. By using this generalized p-version convergence, along with the FEM paradigm, a new numerical approach is proposed to deal with differential equations. Through numerical examples, convergence tests are performed and numerical results are compared with MLPG and analytical solutions. The analysis has shown that the numerical solution obtained by using this method will converge as the order of MLS approximation increases. P-FEM can be directly used for higher order equations because there are no difficulties in construction shape function of any regularity. Adaptive procedures can be realized through the adaptive construction of meshless trial and test functions. The present method possesses a tremendous potential for convergent improved compared with traditional h- or p-version FEM.

Keywords

P-FEM MLS Galerkin approximation Meshless trial function Meshless test function 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation of China (grant No. 51405066) and Natural Science Foundation of China (grant No. 51405063).

References

  1. 1.
    Fries, T.P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Meth. Eng. 84(3), 253–304 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Dong, L., Atluri, S.N.: Development of T-Trefftz four-node quadrilateral and Voronoi cell finite elements for macro-& micromechanical modeling of solids. Comput. Model. Eng. Sci. (CMES). 81(1), 69–118 (2011)Google Scholar
  3. 3.
    Šolín, P., Segeth, K. et al.: Higher-Order Finite Element Methods, Taylor & Francis (2003)Google Scholar
  4. 4.
    Melenk, J.M., Wihler, T.P.: A Posteriori error analysis of $ hp $-FEM for singularly perturbed problems. arXiv:1408.6037 (2014)
  5. 5.
    Babuska, I., Szabo, B.A., et al.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Šolín, P., Červený, J., et al.: Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM. Math. Comput. Simul. 77(1), 117–132 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Šolín, P., Vejchodský, T., et al.: Imposing orthogonality to hierarchic higher-order finite elements. Math. Comput. Simul. 76(1), 211–217 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Laszloffy, A., Long, J., et al.: Simple data management, scheduling and solution strategies for managing the irregularities in parallel adaptive hp finite element simulations. Parallel Comput. 26(13), 1765–1788 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Pardo, D., Demkowicz, L.: Integration of hp-adaptivity and a two-grid solver for elliptic problems. Comput. Methods Appl. Mech. Eng. 195(7), 674–710 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Atluri, S.N., Shen, S.: The meshless local Petrov-Galerkin (MLPG) method, Crest (2002)Google Scholar
  11. 11.
    Shen, S.N.A., Shengping.: The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. Comput. Model. Eng. Sci.3, 11–51 (2002)Google Scholar
  12. 12.
    Atluri, S.N., Zhu, T.: A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22(2), 117–127 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Legrain, G., Chevaugeon, N. et al.: High order X-FEM and levelsets for complex microstructures: uncoupling geometry and approximation. Comput. Model. Eng. Sci. 241, 172–189 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Strouboulis, T., Babuška, I., et al.: The design and analysis of the generalized finite element method. Comput. Methods Appl. Mech. Eng. 181(1), 43–69 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Strouboulis, T., Copps, K., et al.: The generalized finite element method: an example of its implementation and illustration of its performance. Int. J. Numer. Meth. Eng. 47(8), 1401–1417 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Meth. Eng. 45(5), 601–620 (1999)zbMATHCrossRefGoogle Scholar
  17. 17.
    Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Tang, Z., Shen, S., et al.: Analysis of materials with strain-gradient effects: A meshless local Petrov-Galerkin (MLPG) approach, with nodal displacements only. Comput. Model. Eng. Sci. 4(1), 177–196 (2003)zbMATHGoogle Scholar
  19. 19.
    Liu, W.-K., Li, S., et al.: Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput. Methods Appl. Mech. Eng. 143(1–2), 113–154 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations