Operative Outcomes of Metabolic/Bariatric Surgery in Subjects with Type 1 Obesity Index (30–35 kg/m2)

  • Ricardo V. CohenEmail author
  • Tarissa Z. Petry
  • Estefano A. Negri


The body mass index (BMI) was developed as an objective and easy method to measure obesity, and it became a useful tool for population and epidemiological studies. BMI was quickly adopted as the main criterion for bariatric surgery, with a “cutoff” value of 35–40 kg/m2, depending on the patients’ comorbidities. However, by ignoring other parameters such as race, gender, age, and fat distribution, this arbitrary system excluded many patients who could benefit from this lifesaving treatment. In addition, there is increasing evidence that bariatric/metabolic surgery in patients with BMI from 30 kg/m2 may have a positive effect on medically uncontrolled type 2 diabetes mellitus (T2DM) as well as other comorbidities. Hence, this provides a strong argument for performing bariatric/metabolic surgery in patients with lower BMI. This chapter identifies the main pitfalls of the present BMI-centered inclusion criteria for bariatric surgery, justifies the need for bariatric/metabolic surgery in patients regardless of baseline BMI, and determines the efficacy and safety of bariatric procedures in those patients.


Obesity Type 2 diabetes mellitus Metabolic surgery Bariatric surgery 


  1. 1.
    Pories WJ, Dohm LG, Mansfield CJ. Beyond the BMI: the search for better guidelines for bariatric surgery. Obesity. 2010;18(5):865–71.CrossRefGoogle Scholar
  2. 2.
    Rubino F, Nathan DM, Eckel RH, et al. Delegates of the 2nd diabetes surgery summit. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39:861–77.CrossRefGoogle Scholar
  3. 3.
    American Diabetes Association Standards of Medical Care in Diabetes. Diabetes Care. 2017;40(Suppl. 1):S1–2.Google Scholar
  4. 4.
    Batterham RL, Cummings D. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care. 2016;39(6):893–901.CrossRefGoogle Scholar
  5. 5.
    Sjostrom L. Review of the key results from the Swedish obese subjects (SOS) trial – a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.CrossRefGoogle Scholar
  6. 6.
    Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012. 2012;366:1577–85.CrossRefGoogle Scholar
  7. 7.
    le Roux CW, Aylwin SJ, Batterham RL, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243(1):108–14. Scholar
  8. 8.
    Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes. A randomized controlled trial. JAMA. 2008;299(3):316–23.CrossRefGoogle Scholar
  9. 9.
    Himpens J, Dapri G, Cadiere GB. A prospective randomized study between laparoscopic gastric banding and laparoscopic isolated sleeve gastrectomy: results after 1 and 3 years. Obes Surg. 2006;16(11):1450–6.CrossRefGoogle Scholar
  10. 10.
    Schauer PR, Kashyap SR, Wolski K, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366:1567–76.CrossRefGoogle Scholar
  11. 11.
    Peterli R, Wölnerhanssen BK, Peters T, Vetter D, Kröll D, Borbély Y, Schultes B, Beglinger C, Drewe J, Schiesser M, Nett P, Bueter M. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255–65.CrossRefGoogle Scholar
  12. 12.
    Ma J, Vella A. What has bariatric surgery taught us about the role of the upper gastrointestinal tract in the regulation of postprandial glucose metabolism? Front Endocrinol. 2018;9:article 324.CrossRefGoogle Scholar
  13. 13.
    Jackness C, Karmally W, Febres G, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes. 2013;62(9):3027–32. Scholar
  14. 14.
    Lee WJ, Ser KH, Chong K, et al. Laparoscopic sleeve gastrectomy for diabetes treatment in nonmorbidly obese patients: efficacy and change of insulin secretion. Surgery. 2010;147(5):664–9.CrossRefGoogle Scholar
  15. 15.
    Lee WJ, Hur KY, Lakadawala M, et al. Gastrointestinal metabolic surgery for the treatment of diabetic patients: a multi-institutional international study. J Gastrointest Surg. 2012;16:45–52.CrossRefGoogle Scholar
  16. 16.
    Abbatini F, Capoccia D, Casella G, et al. Type 2 diabetes in obese patients with body mass index of 30-35 kg/m2: sleeve gastrectomy versus medical treatment. Surg Obes Relat Dis. 2012;8:20–4.CrossRefGoogle Scholar
  17. 17.
    Schauer PR, Kashyap SR, Wolski K, et al. Bariatric surgery vs. intensive medical for diabetes – 5 year outcomes. N Engl J Med. 2017;376:641–51.CrossRefGoogle Scholar
  18. 18.
    Chiellini C, Rubino F, Castagneto M, et al. The effect of bilio-pancreatic diversion on type 2 diabetes in patients with BMI < 35 kg/m2. Diabetologia. 2009;52:1027–30.CrossRefGoogle Scholar
  19. 19.
    Scopinaro N, Adami GF, Papadia FS, et al. The effects of biliopancreatic diversion on type 2 diabetes mellitus in patients with mild obesity (BMI 30–35 kg/m2) and simple overweight (BMI 25–30 kg/m2): a prospective controlled study. Obes Surg. 2011;21:880.CrossRefGoogle Scholar
  20. 20.
    Cohen R, Pinheiro JS, Correa JL, Schiavon CA, et al. Laparoscopic Roux-en-Y gastric bypass for BMI < 35 kg/m(2): a tailored approach. Surg Obes Relat Dis. 2006;2(3):401–4.CrossRefGoogle Scholar
  21. 21.
    Cohen R, Pinheiro JS, Schiavon C, et al. Effect of gastric bypass surgery in patients with type 2 diabetes and only mild obesity. Diabetes Care. 2012;35(7):1420–8.CrossRefGoogle Scholar
  22. 22.
    Lee WJ, Chong K, Chen CY, et al. Diabetes remission and insulin secretion after gastric bypass in patients with body mass index < 35kg/m2. Obes Surg. 2011;21:889–95.CrossRefGoogle Scholar
  23. 23.
    Shah SS, Todkar JS, Shah PS, et al. Diabetes remission and reduced cardiovascular risk after gastric bypass in Asian Indians with body mass index < 35 kg/m2. Surg Obes Relat Dis. 2010;6(4):332–8.CrossRefGoogle Scholar
  24. 24.
    Ikramuddin S, Korner J, Lee WJ, et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA. 2018;319(3):266–78.CrossRefGoogle Scholar
  25. 25.
    Aminian A, Andalib A, Khorgami Z, et al. A nationwide safety analysis of bariatric surgery in nonseverely obese patients with type 2 diabetes. Surg Obes Relat Dis. 2016;12(6):1163–70.CrossRefGoogle Scholar
  26. 26.
    Cohen RV, Le Roux C, Junqueira S, et al. Roux-En-Y gastric bypass in type 2 diabetes patients with mild obesity: a systematic review and meta-analysis. Obes Surg. 2017;27:2733–9.CrossRefGoogle Scholar
  27. 27.
    Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261:459–67.CrossRefGoogle Scholar
  28. 28.
    Tinoco A, El-Kadre L, Aquiar L, et al. Short-term and mid-term control of type 2 diabetes mellitus by laparoscopic sleeve gastrectomy with ileal interposition. World J Surg. 2011;35(10):2238–44.CrossRefGoogle Scholar
  29. 29.
    Kota SK, Ugale S, Gupta N, et al. Ileal interposition with sleeve gastrectomy for treatment of type 2 diabetes mellitus. Indian J Endocrinol Metab. 2012;16(4):589–98.CrossRefGoogle Scholar
  30. 30.
    Kota SK, Ugale S, Gupta N, Modi KD. Laparoscopic ileal interposition with diverted sleeve gastrectomy for treatment of type 2 diabetes. Diabetes Metab Syndr. 2012;6(3):125–31.CrossRefGoogle Scholar
  31. 31.
    DePaula AL, Stival AR, Halpern A, Vencio S. Surgical treatment of morbid obesity: mid-term outcomes of the laparoscopic Ileal interposition associated to a sleeve gastrectomy in 120 patients. Obes Surg. 2010;21(5):668–75.CrossRefGoogle Scholar
  32. 32.
    Cohen R, Caravatto PP, Correa JL, et al. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. SOARD. 2012;8(4):375–80.Google Scholar
  33. 33.
    Geloneze B, Geloneze SR, Fiori C, et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes Surg. 2009;19(8):1077–83.CrossRefGoogle Scholar
  34. 34.
    Ramos AC, Neto MG, de Souza YM, Galvão M. Laparoscopic duodenal–jejunal exclusion in the treatment of type 2 diabetes mellitus in patients with BMI. Obes Surg 2009 <30 kg/m2 (LBMI). 19(3):307–12.Google Scholar
  35. 35.
    Petry TZ, Frabbrini E, Otoch JP. Effect of duodenal–Jejunal bypass surgery on glycemic control in type 2 diabetes: a randomized controlled trial. Obesity. 2015;23(10):1973–9.CrossRefGoogle Scholar
  36. 36.
    Seki Y, Kasama K, Yasuda K, et al. The effects of laparoscopic sleeve gastrectomy with duodenojejunal bypass on Japanese patients with BMI < 35 kg/m2 on type 2 diabetes mellitus and the prediction of successful glycemic control. Obes Surg. 2018;28:242938.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ricardo V. Cohen
    • 1
    Email author
  • Tarissa Z. Petry
    • 1
  • Estefano A. Negri
    • 1
  1. 1.The Center for Obesity and DiabetesOswaldo Cruz German HospitalSão PauloBrazil

Personalised recommendations