Advertisement

A DFT Modeling Approach for Infrastructure Reliability Analysis of Railway Station Areas

  • Matthias VolkEmail author
  • Norman Weik
  • Joost-Pieter Katoen
  • Nils Nießen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11687)

Abstract

Infrastructure failures—in particular in station and junction areas—are one of the most important causes for train delays in railway systems. Individually, subsystems, such as track circuits or radio communication, are well understood and have been analyzed using formal methods. However, verification of the capability of station areas to fulfill operational design specifications as a whole remains widely open.

In this paper, we present a fully automatic translation from station area infrastructure to dynamic fault trees (DFT) with special emphasis on field elements including switches, signals and track occupation detection systems. Reliability is assessed in terms of train routability, where feasible train routes consist of the set of train paths projected in the interlocking system including their requirements w.r.t. the state of field elements. Analysing the DFTs by probabilistic model checking techniques allows for new performance metrics based on, e.g., conditional events or the sequence of failures, which can serve to provide additional insights into the criticality of field elements.

We demonstrate the feasibility of the DFT-based analysis based on data for railway stations in Germany where the generated DFTs consist of hundreds of elements.

Keywords

Railway infrastructure Dynamic fault trees Reliability 

References

  1. 1.
    Andrews, J., Prescott, D., Rozières, F.D.: A stochastic model for railway track asset management. Reliab. Eng. Syst. Saf. 130, 76–84 (2014)CrossRefGoogle Scholar
  2. 2.
    Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model checking for performability. Math. Struct. Comput. Sci. 23(4), 751–795 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basile, D., ter Beek, M.H., Ciancia, V.: Statistical model checking of a moving block railway signalling scenario with Uppaal SMC. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11245, pp. 372–391. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03421-4_24CrossRefGoogle Scholar
  4. 4.
    Bemment, S.D., Goodall, R.M., Dixon, R., Ward, C.P.: Improving the reliability and availability of railway track switching by analysing historical failure data and introducing functionally redundant subsystems. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 232(5), 1407–1424 (2017)CrossRefGoogle Scholar
  5. 5.
    Biagi, M., Carnevali, L., Paolieri, M., Vicario, E.: Performability evaluation of the ERTMS/ETCS – level 3. Transp. Res. Part C 82, 314–336 (2017)CrossRefGoogle Scholar
  6. 6.
    Birnbaum, Z.: On the importance of different components in a multicomponent system. In: Multivariate Analysis-II, pp. 581–592 (1969)Google Scholar
  7. 7.
    Bjørner, D.: New results and trends in formal techniques for the development of software for transportation systems. In: FORMS. L’Harmattan Hongrie (2003)Google Scholar
  8. 8.
    Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic fault tree analysis using input/output interactive Markov chains. In: Proceedings of DSN, pp. 708–717. IEEE (2007)Google Scholar
  9. 9.
    Brünger, O., Gröger, T.: Fahrplantrassen managen und Fahrplanerstellung simulieren. In: 19. Verkehrswissenschaftliche Tage (VWT), Dresden, Germany (2003)Google Scholar
  10. 10.
    Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of railway interlocking systems. Electron. Proc. Theor. Comput. Sci. 184, 19–31 (2015)CrossRefGoogle Scholar
  11. 11.
    Cappart, Q., Limbrée, C., Schaus, P., Quilbeuf, J., Traonouez, L., Legay, A.: Verification of interlocking systems using statistical model checking. In: HASE, pp. 61–68. IEEE Computer Society (2017)Google Scholar
  12. 12.
    CENELEC: EN 50128: Railway applications - Communication, signalling and processing systems - Software for railway control and protection systems (2012), EN 50129: Railway applications - Communication, signalling and processing systems - Safety related electronic systems for signalling (2017), EN 50159: Railway applications - Communication, signalling and processing systems - Safety-related communication in transmission systems (2011)Google Scholar
  13. 13.
    CENELEC: EN 50126–1/50126-2: Railway applications - The specification and demonstration of reliability, availability, maintainability and safety (rams) (2018)Google Scholar
  14. 14.
    Chen, S., Ho, T., Mao, B.: Reliability evaluations of railway power supplies by fault-tree analysis. IET Electric Power Appl. 1(2), 161–172 (2007)CrossRefGoogle Scholar
  15. 15.
    Cimatti, A., Roveri, M., Tonetta, S.: Requirements validation for hybrid systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 188–203. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02658-4_17CrossRefGoogle Scholar
  16. 16.
    Coleman, I.: In2Rail Project Innovative Intelligent Rail, Deliverable D2.1 - Development of Novel S&C Motion/Locking Mechanisms: Design Concept Report. Technical report, Network Rail (NWR) (2015)Google Scholar
  17. 17.
    Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: Proceedings of RAMS, pp. 286–293 (1990)Google Scholar
  18. 18.
    Fantechi, A.: Twenty-five years of formal methods and railways: what next? In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 167–183. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-05032-4_13CrossRefGoogle Scholar
  19. 19.
    Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010, pp. 107–115. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-14261-1_11CrossRefGoogle Scholar
  20. 20.
    Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 37–50 (2019)CrossRefGoogle Scholar
  21. 21.
    Guck, D., Katoen, J.P., Stoelinga, M., Luiten, T., Romijn, J.: Smart railroad maintenance engineering with stochastic model checking. In: Proceedings of RAILWAYS. Civil-Comp Press (2014)Google Scholar
  22. 22.
    Hassankiadeh, S.J.: Failure analysis of railway switches and crossings for the purpose of preventive maintenance. MA thesis, KTH Stockholm (2011)Google Scholar
  23. 23.
    Henry, J.: Automatic fault tree construction for railway safety systems. Ph.D. thesis, Loughborough University (1996)Google Scholar
  24. 24.
    Hermanns, H., Jansen, D.N., Usenko, Y.S.: From StoCharts to MoDeST. In: Proceedings of WOSP. ACM Press (2005)Google Scholar
  25. 25.
    Iliasov, A., Romanovsky, A.B.: Formal analysis of railway signalling data. In: HASE, pp. 70–77. IEEE Computer Society (2016)Google Scholar
  26. 26.
    Iliasov, A., Taylor, D., Laibinis, L., Romanovsky, A.: Formal verification of signalling programs with SafeCap. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 91–106. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99130-6_7CrossRefGoogle Scholar
  27. 27.
    Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a diet: automated reduction by graph rewriting. Formal Asp. Comput. 29, 1–53 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: Proceedings of DSN, pp. 299–310. IEEE (2016)Google Scholar
  29. 29.
    Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91268-4_14CrossRefGoogle Scholar
  30. 30.
    Kalvakunta, R.G.: Reliability modelling of ERTMS/ETCS. MA thesis, NTNU (2017)Google Scholar
  31. 31.
    Kassa, E.: Analysis of failures within switches and crossings using failure modes and effects analysis methodology. In: Proceedings of Intelliswitch Symposium (2017)Google Scholar
  32. 32.
    Luteberget, B., Johansen, C.: Efficient verification of railway infrastructure designs against standard regulations. Formal Methods Syst. Des. 52(1), 1–32 (2018)CrossRefGoogle Scholar
  33. 33.
    Morant, S.: New generation of turnouts promises to improve reliability and reduce costs. IRJ Int. Rail. J. 56(12) (2016)Google Scholar
  34. 34.
    Nash, A., Huerlimann, D., Schütte, J., Krauss, V.: RailML - a standard data interface for railroad applications, pp. 3–10. WIT Press, Southampton (2004)CrossRefGoogle Scholar
  35. 35.
    ORR - Office of Road and Rail: Online data portal, Rail infrastructure, assets and environmental (2013). https://dataportal.orr.gov.uk/. Accessed 01 May 2019
  36. 36.
    Ou, Y., Dugan, J.B.: Approximate sensitivity analysis for acyclic Markov reliability models. IEEE Trans. Rel. 52(2), 220–230 (2003)CrossRefGoogle Scholar
  37. 37.
    Platzer, A., Quesel, J.-D.: European train control system: a case study in formal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 246–265. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10373-5_13CrossRefGoogle Scholar
  38. 38.
    Prescott, D., Andrews, J.: Modelling maintenance in railway infrastructure management. In: Proceedings of RAMS, pp. 1–6. IEEE (2013)Google Scholar
  39. 39.
    Ruijters, E., Guck, D., van Noort, M., Stoelinga, M.: Reliability-centered maintenance of the electrically insulated railway joint via fault tree analysis: a practical experience report. In: Proceedings of DSN. IEEE (2016)Google Scholar
  40. 40.
    Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Stamatelatos, M., Vesely, W., Dugan, J.B., Fragola, J., Minarick, J., Railsback, J.: Fault Tree Handbook with Aerospace Applications. NASA Headquarters (2002)Google Scholar
  42. 42.
    Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)CrossRefGoogle Scholar
  43. 43.
    Weik, N., Nießen, N.: Performability analysis of railway systems. In: 2018 International Conference on Intelligent Rail Transportation (ICIRT). IEEE (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matthias Volk
    • 1
    Email author
  • Norman Weik
    • 2
  • Joost-Pieter Katoen
    • 1
  • Nils Nießen
    • 2
  1. 1.Chair of Software Modeling and VerificationRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Transport ScienceRWTH Aachen UniversityAachenGermany

Personalised recommendations