Advertisement

Recent Developments in Particle Formation with Supercritical Fluid Extraction of Emulsions Process for Encapsulation

  • Diego T. SantosEmail author
  • Ádina L. Santana
  • M. Angela A. Meireles
  • Ademir José Petenate
  • Eric Keven Silva
  • Juliana Q. Albarelli
  • Júlio C. F. Johner
  • M. Thereza M. S. Gomes
  • Ricardo Abel Del Castillo Torres
  • Tahmasb Hatami
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Efficient encapsulation techniques and development of special delivery systems enhance the stability of target compounds, enabling their processing and application. Supercritical fluid extraction of emulsions (SFEE) is a promising alternative to process natural target compounds, due to its suitability to encapsulate poorly water-soluble compounds in an aqueous suspension, providing products with controlled particle size, stability and without toxicity. This chapter provides technological aspects and recent data (2016–2018) on the application of SFEE delivery systems to encapsulate compounds of great interest to the food and non-food industry.

References

  1. 1.
    V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, B. Bugarski, An overview of encapsulation technologies for food applications. Proc. Food Sci. 1, 1806–1815 (2011).  https://doi.org/10.1016/j.profoo.2011.09.265CrossRefGoogle Scholar
  2. 2.
    W. Wang, G. Liu, J. Wu, Y. Jiang, Co-precipitation of 10-hydroxycamptothecin and poly (l-lactic acid) by supercritical CO2 anti-solvent process using dichloromethane/ethanol co-solvent. J. Supercrit. Fluids 74, 137–144 (2013).  https://doi.org/10.1016/j.supflu.2012.11.022CrossRefGoogle Scholar
  3. 3.
    P. York, U.B. Kompella, B.Y. Shekunov, Supercritical Fluid Technology for Drug Product Development (CRC Press, 2004)Google Scholar
  4. 4.
    Y. Murakami, Y. Shimoyama, Supercritical extraction of emulsion in microfluidic slug-flow for production of nanoparticle suspension in aqueous solution. J. Supercrit. Fluids 118, 178–184 (2016).  https://doi.org/10.1016/j.supflu.2016.08.009CrossRefGoogle Scholar
  5. 5.
    J. Kluge, L. Joss, S. Viereck, M. Mazzotti, Emulsion crystallization of phenanthrene by supercritical fluid extraction of emulsions. Chem. Eng. Sci. 77, 249–258 (2012).  https://doi.org/10.1016/j.ces.2011.12.008CrossRefGoogle Scholar
  6. 6.
    G. Brunner, Supercritical fluids: technology and application to food processing. J. Food Eng. 67 (2005).  https://doi.org/10.1016/j.jfoodeng.2004.05.060CrossRefGoogle Scholar
  7. 7.
    C. Prieto, C.M.M. Duarte, L. Calvo, Performance comparison of different supercritical fluid extraction equipments for the production of vitamin E in polycaprolactone nanocapsules by supercritical fluid extraction of emulsionsc. J. Supercrit. Fluids 122, 70–78 (2017).  https://doi.org/10.1016/j.supflu.2016.11.015CrossRefGoogle Scholar
  8. 8.
    G. Lévai, J.Q. Albarelli, D.T. Santos, M.A.A. Meireles, Á. Martín, S. Rodríguez-Rojo, M.J. Cocero, Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: process scale-upstudy and thermo-economic evaluation. Food Bioprod. Process. 103, 27–38 (2017).  https://doi.org/10.1016/j.fbp.2017.02.008CrossRefGoogle Scholar
  9. 9.
    G. Lévai, Á. Martín, S.R. Rojo, M.J. Cocero, T.M. Fieback, Measurement and modelling of mass transport properties during the supercritical fluid extraction of emulsions. J. Supercrit. Fluids 129, 36–47 (2017).  https://doi.org/10.1016/j.supflu.2017.01.015CrossRefGoogle Scholar
  10. 10.
    M.J. Cocero, Á. Martín, F. Mattea, S. Varona, Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J. Supercrit. Fluids 47(3), 546–555 (2009).  https://doi.org/10.1016/j.supflu.2008.08.015CrossRefGoogle Scholar
  11. 11.
    P. Chattopadhyay, B.Y. Shekunov, J.S. Seitzinger, R. Huff, Particles from Supercritical Fluid Extraction of Emulsion. USA Patent (2004)Google Scholar
  12. 12.
    M. Perrut, J. Jung, F. Leboeuf, Method for Obtaining Solid Particles from at Least a Water Soluble Product. USA Patent (2004)Google Scholar
  13. 13.
    Ferro, Ferro Corporation (2019). http://www.ferro.com
  14. 14.
    G.D. Porta, N. Falco, E. Reverchon, Continuous supercritical emulsions extraction: a new technology for biopolymer microparticles production. Biotechnol. Bioeng. 108(3), 676–686 (2011).  https://doi.org/10.1002/bit.22972CrossRefGoogle Scholar
  15. 15.
    B.Y. Shekunov, P. Chattopadhyay, J. Seitzinger, R. Huff, Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm. Res. 23(1), 196–204 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Tabernero, E.M.M. del Valle, M.A. Galán, Supercritical fluids for pharmaceutical particle engineering: methods, basic fundamentals and modelling. Chem. Eng. Process. 60, 9–25 (2012)CrossRefGoogle Scholar
  17. 17.
    M. Furlan, J. Kluge, M. Mazzotti, M. Lattuada, Preparation of biocompatible magnetite–PLGA composite nanoparticles using supercritical fluid extraction of emulsions. J. Supercrit. Fluids 54(3), 348–356 (2010)CrossRefGoogle Scholar
  18. 18.
    D.T. Santos, Á. Martín, M.A.A. Meireles, M.J. Cocero, Production of stabilized sub-micrometric particles of carotenoids using supercritical fluid extraction of emulsions. J. Supercrit. Fluids 61, 167–174 (2012)CrossRefGoogle Scholar
  19. 19.
    F.T. Karim, K. Ghafoor, S. Ferdosh, F. Al-Juhaimi, E. Ali, K.B. Yunus, M.H. Hamed, A. Islam, M. Asif, M.Z.I. Sarker, Microencapsulation of fish oil using supercritical antisolvent process. J. Food Drug Anal. 25(3), 654–666 (2017).  https://doi.org/10.1016/j.jfda.2016.11.017CrossRefGoogle Scholar
  20. 20.
    C. Prieto, L. Calvo, The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J. Supercrit. Fluids 128, 227–234 (2017).  https://doi.org/10.1016/j.supflu.2017.06.003CrossRefGoogle Scholar
  21. 21.
    Y. Murakami, Y. Shimoyama, Production of nanosuspension functionalized by chitosan using supercritical fluid extraction of emulsion. J. Supercrit. Fluids 128, 121–127 (2017).  https://doi.org/10.1016/j.supflu.2017.05.014CrossRefGoogle Scholar
  22. 22.
    W.M. Giufrida, V.F. Cabral, L. Cardoso-Filho, Conti D. dos Santos, V.E.B. de Campos, S.R.P. da Rocha, Medroxyprogesterone-encapsulated poly(3-hydroxybutirate-co-3-hydroxyvalerate) nanoparticles using supercritical fluid extraction of emulsions. J. Supercrit. Fluids 118, 79–88 (2016).  https://doi.org/10.1016/j.supflu.2016.07.026CrossRefGoogle Scholar
  23. 23.
    W.J. Lee, C.P. Tan, R. Sulaiman, R.L. Smith, G.H. Chong, Microencapsulation of red palm oil as an oil-in-water emulsion with supercritical carbon dioxide solution-enhanced dispersion. J. Food Eng. 222, 100–109 (2018).  https://doi.org/10.1016/j.jfoodeng.2017.11.011CrossRefGoogle Scholar
  24. 24.
    ACd Aguiar, L.P.S. Silva, CAd Rezende, G.F. Barbero, J. Martínez, Encapsulation of pepper oleoresin by supercritical fluid extraction of emulsions. J. Supercrit. Fluids 112, 37–43 (2016).  https://doi.org/10.1016/j.supflu.2016.02.009CrossRefGoogle Scholar
  25. 25.
    G. Lévai, Á. Martín, A. Moro, A.A. Matias, V.S.S. Gonçalves, M.R. Bronze, C.M.M. Duarte, S. Rodríguez-Rojo, M.J. Cocero, Production of encapsulated quercetin particles using supercritical fluid technologies. Powder Technol. 317, 142–153 (2017).  https://doi.org/10.1016/j.powtec.2017.04.041CrossRefGoogle Scholar
  26. 26.
    V. Cricchio, M. Best, E. Reverchon, N. Maffulli, G. Phillips, M. Santin, G. Della Porta, Novel superparamagnetic microdevices based on magnetized PLGA/PLA microparticles obtained by supercritical fluid emulsion and coating by carboxybetaine-functionalized chitosan allowing the tuneable release of therapeutics. J. Pharm. Sci. 106(8), 2097–2105 (2017).  https://doi.org/10.1016/j.xphs.2017.05.005CrossRefGoogle Scholar
  27. 27.
    C. Prieto, L. Calvo, C.M.M. Duarte, Continuous supercritical fluid extraction of emulsions to produce nanocapsules of vitamin E in polycaprolactone. J. Supercrit. Fluids 124, 72–79 (2017).  https://doi.org/10.1016/j.supflu.2017.01.014CrossRefGoogle Scholar
  28. 28.
    C. Prieto, L. Calvo, Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone. J. Supercrit. Fluids 119, 274–282 (2017).  https://doi.org/10.1016/j.supflu.2016.10.004CrossRefGoogle Scholar
  29. 29.
    N. Falco, E. Reverchon, G. Della Porta, Injectable PLGA/hydrocortisone formulation produced by continuous supercritical emulsion extraction. Int. J. Pharm. 441(1), 589–597 (2013).  https://doi.org/10.1016/j.ijpharm.2012.10.039CrossRefGoogle Scholar
  30. 30.
    G. Della Porta, F. Castaldo, M. Scognamiglio, L. Paciello, P. Parascandola, E. Reverchon, Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J. Supercrit. Fluids 63, 1–7 (2012).  https://doi.org/10.1016/j.supflu.2011.12.020CrossRefGoogle Scholar
  31. 31.
    F. Mattea, Á. Martín, A. Matías-Gago, M.J. Cocero, Supercritical antisolvent precipitation from an emulsion: β-carotene nanoparticle formation. J. Supercrit. Fluids 51(2), 238–247 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego T. Santos
    • 1
    Email author
  • Ádina L. Santana
    • 2
  • M. Angela A. Meireles
    • 3
  • Ademir José Petenate
    • 4
  • Eric Keven Silva
    • 5
  • Juliana Q. Albarelli
    • 6
  • Júlio C. F. Johner
    • 7
  • M. Thereza M. S. Gomes
    • 8
  • Ricardo Abel Del Castillo Torres
    • 9
  • Tahmasb Hatami
    • 10
  1. 1.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  2. 2.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  3. 3.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  4. 4.Process ImprovementEDTICampinasBrazil
  5. 5.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  6. 6.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  7. 7.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  8. 8.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  9. 9.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  10. 10.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil

Personalised recommendations