A Detailed Design and Construction of a Supercritical Antisolvent Precipitation Equipment

  • Diego T. SantosEmail author
  • Ádina L. Santana
  • M. Angela A. Meireles
  • Ademir José Petenate
  • Eric Keven Silva
  • Juliana Q. Albarelli
  • Júlio C. F. Johner
  • M. Thereza M. S. Gomes
  • Ricardo Abel Del Castillo Torres
  • Tahmasb Hatami
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This work consists of the steps for the assembly of a Supercritical Antisolvent Precipitation laboratory equipment and evaluation of the parts acquisition costs. A flow diagram with all components was developed, a complete list of all necessary components was presented, and an estimate of the acquisition of these parts in Brazil was reported. The stages of construction along with the importance of each component in the equipment were discussed. An equipment designs were presented as a result of the current work that serve as a basis for consulting future work on the development of new equipment.



The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES), National Counsel of Technological and Scientific Development (CNPq), the São Paulo Research Foundation (FAPESP) and for the financial support. M.A.A. Meireles thanks CNPq for the productivity grant (302423/2015-0).


  1. 1.
    G.L. Zabot, M.A.A. Meireles, On-line process for pressurized ethanol extraction of onion peels extract and particle formation using supercritical antisolvent. J. Supercrit. Fluids 110, 230–239 (2016). Scholar
  2. 2.
    V. Prosapio, I. De Marco, E. Reverchon, Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 138, 247–258 (2018). Scholar
  3. 3.
    Thar, Thar Technologies (2010), Accessed 16 July 2010
  4. 4.
    G.B. Jacobson, R. Shinde, R.L. McCullough, N.J. Cheng, A. Creasman, A. Beyene, R.P. Hickerson, C. Quan, C. Turner, R.L. Kaspar, C.H. Contag, R.N. Zare, Nanoparticle formation of organic compounds with retained biological activity. J. Pharm. Sci. 99(6), 2750–2755 (2010). Scholar
  5. 5.
    Extratex (2018) Supercritical fluid extract and particle formation system. (Extratex S.A.R.L. 2018), Accessed 26 June 2018
  6. 6.
    J.C.F. Johner, MAdA MEIRELES, Construction of a supercritical fluid extraction (SFE) equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image. Food Sci. Technol. (Camp.) 36, 210–247 (2016)CrossRefGoogle Scholar
  7. 7.
    G. Brunner, Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes (Springer, Steinkopff, Darmstadt; New York, 1994)CrossRefGoogle Scholar
  8. 8.
    D.T. Santos, M.A.A. Meireles, Optimization of bioactive compounds extraction from jabuticaba (Myrciaria cauliflora) skins assisted by high pressure CO2. Innov. Food Sci. & Emerg. Technol. 12(3), 398–406 (2011). Scholar
  9. 9.
    G.L. Zabot, M.N. Moraes, A.J. Petenate, M.A.A. Meireles, Influence of the bed geometry on the kinetics of the extraction of clove bud oil with supercritical CO2. J. Supercrit. Fluids 93, 56–66 (2014). Scholar
  10. 10.
    Á.L. Santana, J.Q. Albarelli, D.T. Santos, R. Souza, N.T. Machado, M.E. Araújo, M.A.A. Meireles, Kinetic behavior, mathematical modeling, and economic evaluation of extracts obtained by supercritical fluid extraction from defatted assaí waste. Food Bioprod. Process. 107, 25–35 (2018). Scholar
  11. 11.
    S. Pereda, S. Bottini, E. Brignole, Fundamentals of supercritical fluid technology, in Supercritical fluid extraction of nutraceuticals and bioactive compounds (CRC Press 2007), pp. 1–24. Scholar
  12. 12.
    J.C.F. Johner, T. Hatami, G.L. Zabot, M.A.A. Meireles, Kinetic behavior and economic evaluation of supercritical fluid extraction of oil from pequi (Caryocar brasiliense) for various grinding times and solvent flow rates. J. Supercrit. Fluids 140, 188–195 (2018). Scholar
  13. 13.
    D.T. Santos, C.L.C. Albuquerque, M.A.A. Meireles, Antioxidant dye and pigment extraction using a homemade pressurized solvent extraction system. Procedia Food Sci. 1, 1581–1588 (2011). Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Diego T. Santos
    • 1
    Email author
  • Ádina L. Santana
    • 2
  • M. Angela A. Meireles
    • 3
  • Ademir José Petenate
    • 4
  • Eric Keven Silva
    • 5
  • Juliana Q. Albarelli
    • 6
  • Júlio C. F. Johner
    • 7
  • M. Thereza M. S. Gomes
    • 8
  • Ricardo Abel Del Castillo Torres
    • 9
  • Tahmasb Hatami
    • 10
  1. 1.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  2. 2.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  3. 3.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  4. 4.Process ImprovementEDTICampinasBrazil
  5. 5.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  6. 6.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  7. 7.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  8. 8.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  9. 9.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil
  10. 10.LASEFI/DEA, School of Food EngineeringUniversity of Campinas—UNICAMPCampinasBrazil

Personalised recommendations