Skip to main content

Lie Group Machine Learning and Gibbs Density on Poincaré Unit Disk from Souriau Lie Groups Thermodynamics and SU(1,1) Coadjoint Orbits

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

In 1969, Jean-Marie Souriau has introduced a “Lie Groups Thermodynamics” in Statistical Mechanics in the framework of Geometric Mechanics. This Souriau’s model considers the statistical mechanics of dynamic systems in their “space of evolution” associated to a homogeneous symplectic manifold by a Lagrange 2-form, and defines thanks to cohomology (non equivariance of the coadjoint action on the moment map with appearance of an additional cocyle) a Gibbs density (of maximum entropy) that is covariant under the action of dynamic groups of physics (e.g., Galileo’s group in classical physics). Souriau model is more general if we consider another Souriau theorem, that we can associate to a Lie group, an homogeneous symplectic manifold with a KKS 2-form on their coadjoint orbits. Souriau method could then be applied on Lie Groups to define a covariant maximum entropy density by Kirillov representation theory. We will illustrate this method for homogeneous Siegel domains and more especially for Poincaré unit disk by considering SU(1,1) group coadjoint orbit and by using its Souriau’s moment map. For this case, the coadjoint action on moment map is equivariant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargmann, V.: Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 588–640 (1947)

    Article  MathSciNet  Google Scholar 

  2. Souriau, J.-M.: Mécanique statistique, groupes de Lie et cosmologie, Colloques int. du CNRS numéro 237. Aix-en-Provence, France, 24–28, pp. 59–113 (1974)

    Google Scholar 

  3. Souriau, J.-M.: Structure des systèmes dynamiques, Dunod (1969)

    Google Scholar 

  4. Kirillov, A.A.: Elements of the Theory of Representations. Springer, Berlin (1976). https://doi.org/10.1007/978-3-642-66243-0

    Book  MATH  Google Scholar 

  5. Marle, C.-M.: From tools in symplectic and poisson geometry to J.-M. Souriau’s theories of statistical mechanics and thermodynamics. Entropy 18, 370 (2016)

    Article  Google Scholar 

  6. Barbaresco, F.: Higher order geometric theory of information and heat based on poly-symplectic geometry of Souriau lie groups thermodynamics and their contextures: the bedrock for lie group machine learning. Entropy 20, 840 (2018)

    Article  Google Scholar 

  7. Cishahayo, C., de Bièvre, S.: On the contraction of the discrete series of SU(1;1). Annales de l’institut Fourier 43(2), 551–567 (1993)

    Article  MathSciNet  Google Scholar 

  8. Cahen B.: Contraction de SU(1,1) vers le groupe de Heisenberg, Travaux mathématiques, Fascicule XV, pp. 19–43 (2004)

    Google Scholar 

  9. Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization. J. Geom. Phys. 7, 45–62 (1990)

    Article  MathSciNet  Google Scholar 

  10. Dai, J.: Conjugacy classes, characters and coadjoint orbits of DiffS1, Ph.D. dissertation, The University of Arizona, Tucson, AZ, 85721, USA (2000)

    Google Scholar 

  11. Dai, J., Pickrell, D.: The orbit method and the Virasoro extension of Diff+(S1): I. Orbital integrals. J. Geom. Phys. 44, 623–653 (2003)

    Article  MathSciNet  Google Scholar 

  12. Knapp, A.: Representation Theory of Semisimple Groups: An Overview Based on Examples. Princeton University Press, Princeton (1986)

    Book  Google Scholar 

  13. Frenkel, I.: Orbital theory for affine Lie algebras. Invent. Math. 77, 301–354 (1984)

    Article  MathSciNet  Google Scholar 

  14. Libine, M.: Introduction to Representations of Real Semisimple Lie Groups, arXiv:1212.2578v2 (2014)

  15. Guichardet, A.: La methode des orbites: historiques, principes, résultats. Leçons de mathématiques d’aujourd’hui, vol. 4, Cassini, pp. 33–59 (2010)

    Google Scholar 

  16. Vergne, M.: Representations of Lie groups and the orbit method. In: Srinivasan, B., Sally, J.D. (eds.) Actes Coll. Bryn Mawr, pp. 59–101. Springer, New York (1983). https://doi.org/10.1007/978-1-4612-5547-5_5

    Chapter  Google Scholar 

  17. Duflo, M., Heckman, G., Vergne, M.: Projection d’orbites, formule de Kirillov et formule de Blattner, Mémoires de la SMF, Série 2, no. 15, pp. 65–128 (1984)

    Google Scholar 

  18. Witten, E.: Coadjoint orbits of the Virasoro group. Com. Math. Phys. 114, 1–53 (1988)

    Article  MathSciNet  Google Scholar 

  19. Pukanszky, L.: The Plancherel formula for the universal covering group of SL(2, R). Math. Ann. 156, 96–143 (1964)

    Article  MathSciNet  Google Scholar 

  20. Clerc, J.L., Orsted, B.: The Maslov index revisited. Transform. Groups 6(4), 303–320 (2001)

    Article  MathSciNet  Google Scholar 

  21. Foth, P., Lamb M.: The poisson geometry of SU(1,1). J. Math. Phys. 51 (2010)

    Article  MathSciNet  Google Scholar 

  22. Perelomov, A.M.: Coherent states for arbitrary lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  MathSciNet  Google Scholar 

  23. Ishi, H.: Kolodziejek, B.: Characterization of the Riesz Exponential Family on Homogeneous Cones. arXiv:1605.03896 (2018)

  24. Tojo, K., Yoshino, T.: A Method to Construct Exponential Families by Representation Theory. arXiv:1811.01394 (2018)

  25. Tojo, K., Yoshino, T.: On a method to construct exponential families by representation theory. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 147–156. Springer, Cham (2019)

    Google Scholar 

  26. Pukanszky, L.: The Plancherel formula for the universal covering group of SL(2,R). Math Annalen 156, 96–143 (1964)

    Google Scholar 

  27. Pukanszky, L.: Leçons sur les représentations des groupes. Monographies de la Société Mathématique de France, Dunod, Paris (1967)

    MATH  Google Scholar 

  28. Bernat, P., et al.: Représentations des groupes de Lie. Monographie de la Société Mathématique de France, Dunod, Paris (1972)

    MATH  Google Scholar 

  29. Dixmier, J.: Les algèbres enveloppantes. Gauthier-Villars, Paris (1974)

    MATH  Google Scholar 

  30. Duflo, M.: Construction des représentations unitaires d’un groupe de Lie, C.I.M.E. (1980)

    Google Scholar 

  31. Guichardet, A.: Théorie de Mackey et méthode des orbites selon M. Duflo. Expo. Math. 3, 303–346 (1985)

    Google Scholar 

  32. Mnemné, R., Testard, F.: Groupes de Lie classiques, Hermann (1985)

    Google Scholar 

  33. Yahyai, M.: Représentations étoile du revêtement universel du groupe hyperbolique et formule de Plancherel, Thèse Université de Metz, 23 Juin 1995

    Google Scholar 

  34. Rais, M.: Orbites coadjointes et représentations des groupes, cours C.I.M.P.A. (1980)

    Google Scholar 

  35. Rais, M.: La représentation coadjointe du groupe affine. Annales de l’Institut Fourier 28(1), 207–237 (1978)

    Article  MathSciNet  Google Scholar 

  36. Barbaresco, F.: Souriau exponential map algorithm for machine learning on matrix lie groups. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2019. LNCS, vol. 11712, pp. 85–95. Springer, Cham (2019)

    Google Scholar 

  37. Barbaresco, F.: Geometric theory of heat from Souriau lie groups thermodynamics and Koszul Hessian geometry: applications in information geometry for exponential families. Entropy 18, 386 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Barbaresco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbaresco, F. (2019). Lie Group Machine Learning and Gibbs Density on Poincaré Unit Disk from Souriau Lie Groups Thermodynamics and SU(1,1) Coadjoint Orbits. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics