Advertisement

CT in Cardiac Applications

  • Arya Iranmanesh
  • Geoffrey D. RubinEmail author
Chapter

Abstract

Imaging the heart and its associated structures is among the most challenging applications for computed tomography. This chapter begins with basic anatomy and key physiological properties of the heart that are important for cardiac CT. The next section focuses on the characteristics of CT scanners that influence the quality of cardiac CT images and key imaging strategies for achieving high-quality results. Finally, a range of common clinical applications for cardiac CT are discussed.

Keywords

Cardiac CT Coronary arteries CT angiography Heart disease Coronary CT angiography Heart Coronary artery disease Computed tomography Electrocardiographic gating 

References

  1. 1.
    Blanke P, Schoepf UJ, Leipsic JA. CT in transcatheter aortic valve replacement. Radiology. 2013;269(3):650–69.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    O’Brien JP, Srichai MB, Hecht EM, Kim DC, Jacobs JE. Anatomy of the heart at multidetector CT: what the radiologist needs to know. Radiographics. 2007;27(6):1569–82.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Villa AD, Sammut E, Nair A, Rajani R, Bonamini R, Chiribiri A. Coronary artery anomalies overview: the normal and the abnormal. World J Radiol. 2016;8(6):537–55.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hood WB Jr. Regional venous drainage of the human heart. Br Heart J. BMJ Publishing Group. 1968;30(1):105.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Kligerman S. Imaging of pericardial disease. Radiol Clin N Am. 2019;57(1):179–99.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mahesh M, Cody DD. Physics of cardiac imaging with multiple-row detector CT. pubsrsnaorg. 2007.Google Scholar
  7. 7.
    Boudoulas H, Geleris P, Lewis RP, Chest SR. Linear relationship between electrical systole, mechanical systole, and heart rate. CHEST. 1981;80:613–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Chung CS, Karamanoglu M, Kovács SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Phys Heart Circ Phys. 2004;287(5):H2003–8.Google Scholar
  9. 9.
    Garner KK, Pomeroy W, Arnold JJ. Exercise stress testing: indications and common questions. Am Fam Physician. 2017;96(5):293–9.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Achenbach S. Cardiac CT: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr. 2007;1(1):3–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Rubin GD. Emerging and evolving roles for CT in screening for coronary heart disease. J Am Coll Radiol. 10(12):943–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Saini S, Rubin GD, Kalra MK. MDCT: a practical approach. New York: Springer Science & Business Media; 2007.Google Scholar
  13. 13.
    Rubin GD, Leipsic J, Joseph Schoepf U, Fleischmann D, Napel S. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance. Radiology. 2014;271(3):633–52.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Janowitz WR. Current status of mechanical computed tomography in cardiac imaging. Am J Cardiol. 2001;88(2A):35E–8E.PubMedCrossRefGoogle Scholar
  15. 15.
    Funabashi N, Kobayashi Y, Perlroth M, Rubin GD. Coronary artery: quantitative evaluation of normal diameter determined with electron-beam CT compared with cine coronary angiography initial experience. Radiology. 2003;226(1):263–71.PubMedCrossRefGoogle Scholar
  16. 16.
    Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M. Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology. 1995;196:707–14.PubMedCrossRefGoogle Scholar
  17. 17.
    Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M, Buechel RR, et al. Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol. 2014;64(8):772–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schömig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC: Cardiovasc Imaging. 2009;2(8):940–6.Google Scholar
  19. 19.
    Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24(5):535–46.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süβ C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2005;16(2):256–68.PubMedCrossRefGoogle Scholar
  21. 21.
    Gassenmaier T, Petri N, Allmendinger T, Flohr T, Weng AM, Kunz AS, et al. In vitro comparison of second- and third-generation dual-source CT for coronary stent visualization at different tube potentials. Acad Radiol. 2016;23(8):961–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Goldman LW. Principles of CT: multislice CT. J Nucl Med Technol. Society of Nuclear Medicine. 2008;36(2):57–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ghekiere O, Salgado R, Buls N, Leiner T, Mancini I, Vanhoenacker P, et al. Image quality in coronary CT angiography: challenges and technical solutions. Br J Radiol. 2nd ed. Br Inst Radiol. 2017;90(1072):20160567.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kitagawa K, George RT, Arbab-Zadeh A, Lima JAC, Lardo AC. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion1. Radiology. Radiological Society of North America, Inc. 2010.Google Scholar
  26. 26.
    Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts at cardiac CT: physics and solutions. Radiographics. 2016;36(7):2064–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Pannu HK, Alvarez W Jr, Fishman EK. β-Blockers for cardiac CT: a primer for the radiologist. Am J Roentgenol. 2006;186(6_supplement_2):S341–5.CrossRefGoogle Scholar
  28. 28.
    Sabarudin A, Sun Z. Beta-blocker administration protocol for prospectively ECG triggered coronary CT angiography. WJC. 2013;5(12):453–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Sato K, Isobe S, Sugiura K, Mimura T, Yotsudake Y, Meno C, et al. Optimal starting time of acquisition and feasibility of complementary administration of nitroglycerin with intravenous β-blocker in multislice computed tomography. J Comput Assist Tomogr. 2009;33(2):193–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Earls JP. How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr.. Elsevier. 2009;3(1):45–51.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. American Medical Association. 2009;301(5):500–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362–8.CrossRefGoogle Scholar
  33. 33.
    Fan L, Zhang J, Xu D, Dong Z, Li X, Zhang L. CTCA image quality improvement by using snapshot freeze technique under prospective and retrospective electrocardiographic gating. J Comput Assist Tomogr. 2015;39(2):202–6.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Liang J, Wang H, Xu L, Dong L, Fan Z, Wang R, et al. Impact of SSF on diagnostic performance of coronary computed tomography angiography within 1 heart beat in patients with high heart rate using a 256-row detector computed tomography. J Comput Assist Tomogr. 2018;42(1):54–61.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA.. American Medical Association. 2007;298(3):317–23.PubMedCrossRefGoogle Scholar
  36. 36.
    Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hirshfeld JW, Ferrari VA, Bengel FM, Bergersen L, Chambers CE, Einstein AJ, et al. 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 1: radiation physics and radiation biology: a report of the American College of Cardiology Task Force on expert consensus decision pathways developed in collaboration with mended hearts. Catheter Cardiovasc Interv. 2018;92(2):203–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Stocker TJ, Deseive S, Leipsic J, Chen MY, Rubinshtein R, Heckner M, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. John Wiley & Sons, Ltd. 2011;38(3):1261–5.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lira D, Padole A, Kalra MK, Singh S. Tube potential and CT radiation dose optimization. Am J Roentgenol. 2015;204(1):W4–W10.CrossRefGoogle Scholar
  41. 41.
    Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging. 2012;5(5):484–93.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Matsubara K, Kawashima H, Chusin T, Okubo R. How to optimize radiation dose in computed tomography examinations: available methods and techniques. Med Phys Int. 2017;5(2):498.Google Scholar
  43. 43.
    Deseive S, Pugliese F, Meave A, Alexanderson E, Martinoff S, Hadamitzky M, et al. Image quality and radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for coronary CT angiography: the multicenter, randomized PROTECTION IV study. J Cardiovasc Comput Tomogr. 2015;9(4):278–85.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Seppelt D, Kolb C, Kühn JP, Speiser U, Radosa CG, Hoberück S, et al. Comparison of sequential and high-pitch-spiral coronary CT-angiography: image quality and radiation exposure. Int J Cardiovasc Imaging. Springer Netherlands. 2019;132:1–8.Google Scholar
  45. 45.
    Schoepf UJ, editor. CT of the heart. Totowa: Humana Press; 2019.Google Scholar
  46. 46.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    McCollough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT1. Radiology. Radiological Society of North America. 2007.Google Scholar
  48. 48.
    Raggi P. Coronary calcium is all we need for risk assessment, yet we do not use it often enough. Atherosclerosis. 2019;282:167–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Takx RAP, Suchá D, Park J, Leiner T, Hoffmann U. Sublingual nitroglycerin Administration in Coronary Computed Tomography Angiography: a systematic review. Eur Radiol. Springer Berlin Heidelberg. 2015;25(12):3536–42.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. CAD-RADS™: coronary artery disease – reporting and data system: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. JACR. Elsevier. 2016;13(12):1458–9.PubMedGoogle Scholar
  51. 51.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. JAC J Am Coll Cardiol. 2008;52(21):1724–32.CrossRefGoogle Scholar
  52. 52.
    Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.PubMedCrossRefGoogle Scholar
  53. 53.
    Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging. 2017;10(6):663–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. JAC J Am Coll Cardiol. 2011;58(19):1989–97.CrossRefGoogle Scholar
  56. 56.
    Fairbairn TA, Nieman K, Akasaka T, Nørgaard BL, Berman DS, Raff G, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39(41):3701–11.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nørgaard BL, Terkelsen CJ, Mathiassen ON, Grove EL, Bøtker HE, Parner E, et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. JAC. Elsevier. 2018;72(18):2123–34.Google Scholar
  58. 58.
    Kitabata H, Leipsic J, Patel MR, Nieman K, De Bruyne B, Rogers C, et al. Incidence and predictors of lesion-specific ischemia by FFRCT: learnings from the international ADVANCE registry. J Cardiovasc Comput Tomogr. Elsevier. 2018;12(2):95–100.PubMedCrossRefGoogle Scholar
  59. 59.
    Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. JAC. Elsevier. 2008;52(8):636–43.Google Scholar
  60. 60.
    Kim SY, Seo JB, Do K-H, Heo J-N, Lee JS, Song J-W, et al. Coronary artery anomalies: classification and ECG-gated multi–detector row CT findings with angiographic correlation. Radiographics. 2006;26(2):317–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee BY. Anomalous right coronary artery from the left coronary sinus with an interarterial course: is it really dangerous? Korean Circ J. 2009;39(5):175–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Cronin P, Sneider MB, Kazerooni EA, Kelly AM, Scharf C, Oral H, et al. MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. Am J Roentgenol. 2004;183(3):767–78.CrossRefGoogle Scholar
  63. 63.
    Jarcho JA. Biventricular pacing. N Engl J Med. 2006;355(3):288–94.PubMedCrossRefGoogle Scholar
  64. 64.
    León AR, Abraham WT, Curtis AB, Daubert JP, Fisher WG, Gurley J, et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol. 2005;46(12):2348–56.PubMedCrossRefGoogle Scholar
  65. 65.
    Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.PubMedCrossRefGoogle Scholar
  66. 66.
    Kamdar AR, Meadows TA, Roselli EE, Gorodeski EZ, Curtin RJ, Sabik JF, et al. Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg. 2008;85(4):1239–45.PubMedCrossRefGoogle Scholar
  67. 67.
    Steinberg DH, Staubach S, Franke J, Sievert H. Defining structural heart disease in the adult patient: current scope, inherent challenges and future directions. Eur Heart J Suppl. 2010;12(Suppl E):E2–9.CrossRefGoogle Scholar
  68. 68.
    Chu LC, Johnson PT, Fishman EK. Cardiac CT angiography beyond the coronary arteries: what radiologists need to know and why they need to know it. Am J Roentgenol. American Roentgen Ray Society. 2014.Google Scholar
  69. 69.
    Pham N, Zaitoun H, Mohammed TL, DeLaPena-Almaguer E, Martinez F, Novaro GM, et al. Complications of aortic valve surgery: manifestations at CT and MR imaging. Radiographics. 2012;32(7):1873–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Wells JA, Condado JF, Kamioka N, Dong A, Ritter A, Lerakis S, et al. Outcomes after paravalvular leak closure: transcatheter versus surgical approaches. JACC Cardiovasc Interv. 2017;10(5):500–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361(9355):374–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bouleti C, Baudry G, Lung B, Arangalage D, Abtan J, Ducrocq G, et al. Usefulness of late iodine enhancement on spectral CT in acute myocarditis. JACC Cardiovasc Imaging. American College of Cardiology Foundation. 2017;10(7):826–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bazan O, Ortiz JP. Duration of systole and diastole for hydrodynamic testing of prosthetic heart valves: comparison between ISO 5840 standards and in vivo studies. Braz J Cardiovasc Surg. 2016;31(2):171–3.  https://doi.org/10.5935/1678-9741.20160036.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Duke University School of Medicine, Department of RadiologyDurhamUSA

Personalised recommendations