Future Prospects of Spectral CT: Photon Counting

  • Taly Gilat SchmidtEmail author


Dual-energy spectral CT has demonstrated numerous clinical benefits, yet there is potential to further improve the quantity and quality of acquired spectral data. Clinical dual-energy CT scanners are limited to two spectral measurements that overlap in spectral content. Photon-counting detectors use direct-conversion semiconductors, combined with pulse-height analysis electronics, to sort detected photons into energy bins. Photon-counting detectors can acquire more than two spectral measurements simultaneously, while also acquiring a nonspectral CT image. In addition to the spectral acquisition capabilities, photon-counting detectors have the additional benefits of higher spatial resolution and improved dose efficiency, compared to conventional CT detectors. This chapter explains the basic operation of photon-counting detectors and describes the potential benefits of photon-counting CT (PCCT), as well as the challenges of photon-counting technology. Examples are provided demonstrating the improved nonspectral CT images and new material decomposition applications made possible by PCCT.


Photon counting Spectral CT Material decomposition Detector Detective quantum efficiency Contrast-to-noise ratio Charge sharing Pulse pileup 



The author thanks David Cormode (University of Pennsylvania), Mats Danielsson (KTH Royal Institute of Technology and Prismatic Sensors), Cynthia McCollough (Mayo Clinic), Salim Si-Mohamed (Hospices Civils de Lyon), and Yoad Yagil (Philips Healthcare) for sharing images and information for this chapter.


  1. 1.
    Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000.Google Scholar
  2. 2.
    Schlomka JP, et al. Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys Med Biol. 2008;53(15):4031–47.PubMedCrossRefGoogle Scholar
  3. 3.
    Yu Z, et al. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol. 2016;61(4):1572.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Si-Mohamed S, et al. Review of an initial experience with an experimental spectral photon-counting computed tomography system. Nucl Inst Methods Phys Res Sect A Accel Spectrometers Detect Assoc Equip. 2017;873:27–35.CrossRefGoogle Scholar
  5. 5.
    Bornefalk H, Danielsson M. Photon-counting spectral computed tomography using silicon strip detectors: a feasibility study. Phys Med Biol. 2010;55(7):1999–2022.PubMedCrossRefGoogle Scholar
  6. 6.
    Duan X et al. Electronic noise in CT detectors: impact on image noise and artifacts. 2013. Scholar
  7. 7.
    Yu Z, et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging. 2016;3(4):043503.CrossRefGoogle Scholar
  8. 8.
    Baek J, Pineda AR, Pelc NJ. To bin or not to bin? The effect of CT system limiting resolution on noise and detectability. Phys Med Biol. 2013;58(5):1433.PubMedCrossRefGoogle Scholar
  9. 9.
    Tapiovaara MJ, Wagner RF. SNR and DQE analysis of broad spectrum X-ray imaging. Phys Med Biol. 1985;30(6):519–29.CrossRefGoogle Scholar
  10. 10.
    Giersch J, Niederlöhner D, Anton G. The influence of energy weighting on X-ray imaging quality. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2004;531(1–2):68–74.CrossRefGoogle Scholar
  11. 11.
    Schmidt TG. Optimal ‘image-based’ weighting for energy-resolved CT. Med Phys. 2009;36(7):3018–27.PubMedCrossRefGoogle Scholar
  12. 12.
    Kappler S, et al. Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. Proc SPIE. 2013;8668:86680O–86680O–8.Google Scholar
  13. 13.
    Schmidt TG, Zimmerman KC, Sidky EY. The effects of extending the spectral information acquired by a photon-counting detector for spectral CT. Phys Med Biol. 2015;60(4):1583–600.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Krauss B, Grant KL, Schmidt BT, Flohr TG. The importance of spectral separation. Investig Radiol. 2015;50(2):114–8.CrossRefGoogle Scholar
  15. 15.
    Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.PubMedCrossRefGoogle Scholar
  16. 16.
    Touch M, Clark DP, Barber W, Badea CT. A neural network-based method for spectral distortion correction in photon counting x-ray CT. Phys Med Biol. 2016;61(16):6132–53.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Xu C, Danielsson M, Bornefalk H. Evaluation of energy loss and charge sharing in cadmium telluride detectors for photon-counting computed tomography. IEEE Trans Nucl Sci. 2011;58(3):614–25.CrossRefGoogle Scholar
  18. 18.
    Shikhaliev PM, Fritz SG, Chapman JW. Photon counting multienergy x-ray imaging: effect of the characteristic x rays on detector performance. Med Phys. 2009;36(11):5107–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Taguchi K, Frey EC, Wang X, Iwanczyk JS, Barber WC. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors. Med Phys. 2010;37:3957.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang AS, Harrison D, Lobastov V, Tkaczyk JE. Pulse pileup statistics for energy discriminating photon counting x-ray detectors. Med Phys. 2011;38(7):4265–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Taguchi K, Iwanczyk JS. Vision 20/20: single photon counting x-ray detectors in medical imaging. Med Phys. 2013;40(10):100901.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Koenig T, et al. Charge summing in spectroscopic X-ray detectors with high-Z sensors. IEEE Trans Nucl Sci. 2013;60(6):4713–8.CrossRefGoogle Scholar
  23. 23.
    Koenig T, et al. How spectroscopic x-ray imaging benefits from inter-pixel communication. Phys Med Biol. 2014;59(20):6195–213.PubMedCrossRefGoogle Scholar
  24. 24.
    Liu X, Grönberg F, Sjölin M, Karlsson S, Danielsson M. Count rate performance of a silicon-strip detector for photon-counting spectral CT. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2016;827:102–6.CrossRefGoogle Scholar
  25. 25.
    Hsieh SS, Fleischmann D, Pelc NJ. Dose reduction using a dynamic, piecewise-linear attenuator. Med Phys. 2014;41(2):021910.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Szczykutowicz TP, Mistretta CA. Design of a digital beam attenuation system for computed tomography: part I. System design and simulation framework. Med Phys. 2013;40(2):021905.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hsieh SS, Pelc NJ. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors. Phys Med Biol. 2014;59(11):2829–47.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Schmidt TG, Pektas F. Region-of-interest material decomposition from truncated energy-resolved CT. Med Phys. 2011;38(10):5657–66.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu Q, et al. Image reconstruction for hybrid true-color micro-CT. IEEE Trans Biomed Eng. 2012;59(6):1711–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yu Z, et al. How low can we go in radiation dose for the data-completion scan on a research whole-body photon-counting computed tomography system. J Comput Assist Tomogr. 2016;40:663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Taguchi K, Xu J, Srivastava S, Tsui BMW, Cammin J, Tang Q. Interior region-of-interest reconstruction using a small, nearly piecewise constant subregion. Med Phys. 2011;38:1307.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Johns PC, Yaffe MJ. Correction of pulse-height spectra for peak pileup effects using periodic and random pulse generators. Nucl Inst Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 1987;255(3):559–81.CrossRefGoogle Scholar
  33. 33.
    Gardner RP, Wielopolski L. A generalized method for correcting pulse-height spectra for the peak pile-up effect due to double sum pulses: part I. Predicting spectral distortion for arbitrary pulse shapes. Nucl Inst Methods. 1977;140(2):289–96.CrossRefGoogle Scholar
  34. 34.
    Roessl E, Daerr H, Proksa R. A Fourier approach to pulse pile-up in photon-counting x-ray detectors. Med Phys. 2016;43(3):1295.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu X, et al. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications. J Med Imaging. 2015;2(3):033502.CrossRefGoogle Scholar
  36. 36.
    Cammin J, Xu J, Barber WC, Iwanczyk JS, Hartsough NE, Taguchi K. A cascaded model of spectral distortions due to spectral response effects and pulse pileup effects in a photon-counting x-ray detector for CT. Med Phys. 2014;41(4):041905.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Schmidt TG, Barber RF, Sidky EY. A spectral CT method to directly estimate basis material maps from experimental photon-counting data. IEEE Trans Med Imaging. 2017;36(9):1808–19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerised tomography. Phys Med Biol. 1976;21(5):733–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Wu D, Zhang L, Zhu X, Xu X, Wang S. A weighted polynomial based material decomposition method for spectral x-ray CT imaging. Phys Med Biol. 2016;61(10):3749–83.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Alvarez RE. Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis. Med Phys. 2011;38:2324.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zimmerman KC, Schmidt TG. Experimental comparison of empirical material decomposition methods for spectral CT. Phys Med Biol. 2015;60(8):3175–91.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Persson M, et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys Med Biol. 2014;59(22):6709–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Panta RK, et al. Element-specific spectral imaging of multiple contrast agents: a phantom study. J Instrum. 2018;13(02):T02001–T02001.CrossRefGoogle Scholar
  44. 44.
    Leng S, et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J Med Imaging. 2016;3(4):043504.CrossRefGoogle Scholar
  45. 45.
    Le HQ, Ducote JL, Molloi S. Radiation dose reduction using a CdZnTe-based computed tomography system: comparison to flat-panel detectors. Med Phys. 2010;37(3):1225–36.PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Pourmorteza A, et al. Photon-counting CT of the brain: in vivo human results and image-quality assessment. AJNR Am J Neuroradiol. 2017;38(12):2257–63.PubMedCrossRefGoogle Scholar
  47. 47.
    Symons R, et al. Photon-counting computed tomography for vascular imaging of the head and neck. Investig Radiol. 2018;53(3):135–42.CrossRefGoogle Scholar
  48. 48.
    Symons R, et al. Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology. 2017;285(3):980–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pourmorteza A, et al. Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology. 2016;279(1):239–45.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Roessl E, Herrmann C. Cram{é}r--Rao lower bound of basis image noise in multiple-energy x-ray imaging. Phys Med Biol. 2009;54(5):1307.PubMedCrossRefGoogle Scholar
  51. 51.
    Roessl E et al. Preclinical spectral computed tomography of gold nano-particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011;648:S259–S264.Google Scholar
  52. 52.
    Pan D, et al. Computed tomography in color: nanoK-enhanced spectral CT molecular imaging. Angew Chem Int Ed. 2010;49(50):9635–9.CrossRefGoogle Scholar
  53. 53.
    Pan D, et al. An early investigation of ytterbium nanocolloids for selective and quantitative ‘multicolor’ spectral CT imaging. ACS Nano. 2012;6(4):3364–70.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Roessl E, Brendel B, Engel K, Schlomka J, Thran A, Proksa R. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography. IEEE Trans Med Imaging. 2011;30:1678–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Symons R, et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging. 2017;33(8):1253–61.PubMedCrossRefGoogle Scholar
  56. 56.
    Cormode DP, et al. Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Sci Rep. 2017;7(1):4784.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Muenzel D, et al. Spectral photon-counting CT: initial experience with dual–contrast agent K-edge colonography. Radiology. 2017;283(3):723–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringMarquette University and Medical College of WisconsinMilwaukeeUSA

Personalised recommendations