Clinical Applications of Spectral CT

  • André Euler
  • Sebastian T. Schindera


Dual-energy computed tomography (DECT) has evolved from a research tool to an established clinical imaging modality since its first commercial introduction in the mid-2000s. The possibility to characterize the composition of different human tissues and the quantification of certain materials like iodine, calcium, or fat have shown clinical benefit for various body regions. Virtual monoenergetic imaging (VMI) and multi-material decomposition (MMD) imaging (see Chap.  12) are the most popular and investigated applications of DECT that can be used to improve detection and conspicuity of disease as well as objective and subjective image quality. Furthermore, virtual non-contrast (VNC) imaging can reduce the radiation exposure to the patient by omitting the need for a conventional non-contrast CT scan. In this chapter we review clinically established applications of DECT for the main body regions from head to toe. Moreover, we highlight interesting experimental and preclinical research topics that may become clinically available in the future. Concluding this chapter, we discuss the potential pitfalls associated with DECT.


Computed tomography Dual-energy Virtual monoenergetic Virtual non-contrast Material decomposition Iodine quantification Metal artifact Calcium 


  1. 1.
    Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA, Nogueira RG, et al. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology. 2010;257(1):205–11.CrossRefGoogle Scholar
  2. 2.
    Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am J Neuroradiol. 2012;33(6):1088–94.CrossRefGoogle Scholar
  3. 3.
    Tijssen MP, Hofman PA, Stadler AA, van Zwam W, de Graaf R, van Oostenbrugge RJ, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol. 2014;24(4):834–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang XY, Zhang SH, Xie QZ, Yin ZJ, Liu QY, Zhao MD, et al. Evaluation of virtual noncontrast images obtained from dual-energy CTA for diagnosing subarachnoid hemorrhage. AJNR Am J Neuroradiol. 2015;36(5):855–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Gariani J, Cuvinciuc V, Courvoisier D, Krauss B, Mendes Pereira V, Sztajzel R, et al. Diagnosis of acute ischemia using dual energy CT after mechanical thrombectomy. J Neurointerv Surg. 2016;8(10):996–1000.PubMedCrossRefGoogle Scholar
  6. 6.
    Mohammed MF, Marais O, Min A, Ferguson D, Jalal S, Khosa F, et al. Unenhanced dual-energy computed tomography: visualization of brain edema. Investig Radiol. 2018;53(2):63–9.CrossRefGoogle Scholar
  7. 7.
    Grams AE, Djurdjevic T, Rehwald R, Schiestl T, Dazinger F, Steiger R, et al. Improved visualisation of early cerebral infarctions after endovascular stroke therapy using dual-energy computed tomography oedema maps. Eur Radiol. 2018;28:4534–41.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Noguchi K, Itoh T, Naruto N, Takashima S, Tanaka K, Kuroda S. A novel imaging technique (X-map) to identify acute ischemic lesions using noncontrast dual-energy computed tomography. J Stroke Cerebrovasc Dis. 2017;26(1):34–41.PubMedCrossRefGoogle Scholar
  9. 9.
    Hu R, Daftari Besheli L, Young J, Wu M, Pomerantz S, Lev MH, et al. Dual-energy head CT enables accurate distinction of intraparenchymal hemorrhage from calcification in emergency department patients. Radiology. 2016;280(1):177–83.PubMedCrossRefGoogle Scholar
  10. 10.
    Pomerantz SR, Kamalian S, Zhang D, Gupta R, Rapalino O, Sahani DV, et al. Virtual monochromatic reconstruction of dual-energy unenhanced head CT at 65–75 keV maximizes image quality compared with conventional polychromatic CT. Radiology. 2013;266(1):318–25.CrossRefGoogle Scholar
  11. 11.
    Jia Y, Zhang J, Fan J, Li C, Sun Y, Li D, et al. Gemstone spectral imaging reduced artefacts from metal coils or clips after treatment of cerebral aneurysms: a retrospective study of 35 patients. Br J Radiol. 2015;88(1055):20150222.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5 Suppl):S9–S15.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schneider D, Apfaltrer P, Sudarski S, Nance JW Jr, Haubenreisser H, Fink C, et al. Optimization of kiloelectron volt settings in cerebral and cervical dual-energy CT angiography determined with virtual monoenergetic imaging. Acad Radiol. 2014;21(4):431–6.CrossRefGoogle Scholar
  14. 14.
    Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR. Dual energy CT for the assessment of lung perfusion – correlation to scintigraphy. Eur J Radiol. 2008;68(3):369–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Thieme SF, Graute V, Nikolaou K, Maxien D, Reiser MF, Hacker M, et al. Dual energy CT lung perfusion imaging – correlation with SPECT/CT. Eur J Radiol. 2012;81(2):360–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Chae EJ, Seo JB, Jang YM, Krauss B, Lee CW, Lee HJ, et al. Dual-energy CT for assessment of the severity of acute pulmonary embolism: pulmonary perfusion defect score compared with CT angiographic obstruction score and right ventricular/left ventricular diameter ratio. AJR Am J Roentgenol. 2010;194(3):604–10.PubMedCrossRefGoogle Scholar
  17. 17.
    Meinel FG, Nance JW Jr, Schoepf UJ, Hoffmann VS, Thierfelder KM, Costello P, et al. Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am J Med. 2015;128(7):747–59 e2.PubMedCrossRefGoogle Scholar
  18. 18.
    Takx RAP, Henzler T, Schoepf UJ, Germann T, Schoenberg SO, Shirinova A, et al. Predictive value of perfusion defects on dual energy CTA in the absence of thromboembolic clots. J Cardiovasc Comput Tomogr. 2017;11(3):183–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Im DJ, Hur J, Han KH, Lee HJ, Kim YJ, Kwon W, et al. Acute pulmonary embolism: retrospective cohort study of the predictive value of perfusion defect volume measured with dual-energy CT. AJR Am J Roentgenol. 2017;209(5):1015–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Uhrig M, Simons D, Schlemmer HP. Incidental pulmonary emboli in stage IV melanoma patients: prevalence in CT staging examinations and improved detection with vessel reconstructions based on dual energy CT. PLoS One. 2018;13(7):e0199458.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hong YJ, Kim JY, Choe KO, Hur J, Lee HJ, Choi BW, et al. Different perfusion pattern between acute and chronic pulmonary thromboembolism: evaluation with two-phase dual-energy perfusion CT. AJR Am J Roentgenol. 2013;200(4):812–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim SS, Hur J, Kim YJ, Lee HJ, Hong YJ, Choi BW. Dual-energy CT for differentiating acute and chronic pulmonary thromboembolism: an initial experience. Int J Card Imaging. 2014;30(Suppl 2):113–20.CrossRefGoogle Scholar
  23. 23.
    Weiss J, Notohamiprodjo M, Bongers M, Schabel C, Mangold S, Nikolaou K, et al. Effect of noise-optimized monoenergetic postprocessing on diagnostic accuracy for detecting incidental pulmonary embolism in portal-venous phase dual-energy computed tomography. Investig Radiol. 2017;52(3):142–7.CrossRefGoogle Scholar
  24. 24.
    Meyer M, Haubenreisser H, Schabel C, Leidecker C, Schmidt B, Schoenberg SO, et al. CT pulmonary angiography in patients with acute or chronic renal insufficiency: evaluation of a low dose contrast material protocol. Sci Rep. 2018;8(1):1995.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Apfaltrer P, Sudarski S, Schneider D, Nance JW Jr, Haubenreisser H, Fink C, et al. Value of monoenergetic low-kV dual energy CT datasets for improved image quality of CT pulmonary angiography. Eur J Radiol. 2014;83(2):322–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Dane B, Patel H, O’Donnell T, Girvin F, Brusca-Augello G, Alpert JB, et al. Image quality on dual-energy CTPA virtual monoenergetic images: quantitative and qualitative assessment. Acad Radiol. 2018;25(8):1075–86.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghandour A, Sher A, Rassouli N, Dhanantwari A, Rajiah P. Evaluation of virtual monoenergetic images on pulmonary vasculature using the dual-layer detector-based spectral computed tomography. J Comput Assist Tomogr. 2018;42:858–65.PubMedCrossRefGoogle Scholar
  28. 28.
    Bae K, Jeon KN, Cho SB, Park SE, Moon JI, Baek HJ, et al. Improved opacification of a suboptimally enhanced pulmonary artery in chest CT: experience using a dual-layer detector spectral CT. AJR Am J Roentgenol. 2018;210(4):734–41.PubMedCrossRefGoogle Scholar
  29. 29.
    D’Angelo T, Bucher AM, Lenga L, Arendt CT, Peterke JL, Caruso D, et al. Optimisation of window settings for traditional and noise-optimised virtual monoenergetic imaging in dual-energy computed tomography pulmonary angiography. Eur Radiol. 2018;28(4):1393–401.PubMedCrossRefGoogle Scholar
  30. 30.
    Ohta Y, Kitao S, Yunaga H, Fujii S, Mukai N, Yamamoto K, et al. Myocardial delayed enhancement CT for the evaluation of heart failure: comparison to MRI. Radiology. 2018;288(3):682–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Han R, Sun K, Lu B, Zhao R, Li K, Yang X. Diagnostic accuracy of coronary CT angiography combined with dual-energy myocardial perfusion imaging for detection of myocardial infarction. Exp Ther Med. 2017;14(1):207–13.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ha SJ, Jang Y, Lee BK, Cho IJ, Shim CY, Hong GR, et al. Assessment of myocardial viability based on dual-energy computed tomography in patients with chronic myocardial infarction: comparison with magnetic resonance imaging. Clin Imaging. 2017;46:8–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Sandfort V, Kwan AC, Elumogo C, Vigneault DM, Symons R, Pourmorteza A, et al. Automatic high-resolution infarct detection using volumetric multiphase dual-energy CT. J Cardiovasc Comput Tomogr. 2017;11(4):288–94.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Weininger M, Schoepf UJ, Ramachandra A, Fink C, Rowe GW, Costello P, et al. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: initial results. Eur J Radiol. 2012;81(12):3703–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Meinel FG, De Cecco CN, Schoepf UJ, Nance JW Jr, Silverman JR, Flowers BA, et al. First-arterial-pass dual-energy CT for assessment of myocardial blood supply: do we need rest, stress, and delayed acquisition? Comparison with SPECT. Radiology. 2014;270(3):708–16.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Nakahara T, Toyama T, Jinzaki M, Seki R, Saito Y, Higuchi T, et al. Quantitative analysis of iodine image of dual-energy computed tomography at rest: comparison with 99mTc-tetrofosmin stress-rest single-photon emission computed tomography myocardial perfusion imaging as the reference standard. J Thorac Imaging. 2018;33(2):97–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Carrascosa P, Deviggiano A, de Zan M, Capunay C, Campisi R, Rodriguez-Granillo GA. Improved discrimination of myocardial perfusion defects at low energy levels using virtual monochromatic imaging. J Comput Assist Tomogr. 2017;41(4):661–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Chang S, Han K, Youn JC, Im DJ, Kim JY, Suh YJ, et al. Utility of dual-energy CT-based monochromatic imaging in the assessment of myocardial delayed enhancement in patients with cardiomyopathy. Radiology. 2018;287(2):442–51.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Yamada Y, Jinzaki M, Okamura T, Yamada M, Tanami Y, Abe T, et al. Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(5):391–400.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chevance V, Damy T, Tacher V, Legou F, Ridouani F, Luciani A, et al. Myocardial iodine concentration measurement using dual-energy computed tomography for the diagnosis of cardiac amyloidosis: a pilot study. Eur Radiol. 2018;28(2):816–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Agrawal MD, Oliveira GR, Kalva SP, Pinho DF, Arellano RS, Sahani DV. Prospective comparison of reduced-iodine-dose virtual monochromatic imaging dataset from dual-energy CT angiography with standard-iodine-dose single-energy CT angiography for abdominal aortic aneurysm. AJR Am J Roentgenol. 2016;207(6):W125–W32.PubMedCrossRefGoogle Scholar
  42. 42.
    Shuman WP, Chan KT, Busey JM, Mitsumori LM, Koprowicz KM. Dual-energy CT aortography with 50% reduced iodine dose versus single-energy CT aortography with standard iodine dose. Acad Radiol. 2016;23(5):611–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Tsang DS, Merchant TE, Merchant SE, Smith H, Yagil Y, Hua CH. Quantifying potential reduction in contrast dose with monoenergetic images synthesized from dual-layer detector spectral CT. Br J Radiol. 2017;90(1078):20170290.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shuman WP, O’Malley RB, Busey JM, Ramos MM, Koprowicz KM. Prospective comparison of dual-energy CT aortography using 70% reduced iodine dose versus single-energy CT aortography using standard iodine dose in the same patient. Abdom Radiol (NY). 2017;42(3):759–65.CrossRefGoogle Scholar
  45. 45.
    Javor D, Wressnegger A, Unterhumer S, Kollndorfer K, Nolz R, Beitzke D, et al. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT). Eur Radiol. 2017;27(4):1622–30.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Stolzmann P, Frauenfelder T, Pfammatter T, Peter N, Scheffel H, Lachat M, et al. Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology. 2008;249(2):682–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Maturen KE, Kleaveland PA, Kaza RK, Liu PS, Quint LE, Khalatbari SH, et al. Aortic endograft surveillance: use of fast-switch kVp dual-energy computed tomography with virtual noncontrast imaging. J Comput Assist Tomogr. 2011;35(6):742–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Flors L, Leiva-Salinas C, Norton PT, Patrie JT, Hagspiel KD. Imaging follow-up of endovascular repair of type B aortic dissection with dual-source, dual-energy CT and late delayed-phase scans. J Vasc Interv Radiol. 2014;25(3):435–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Martin SS, Wichmann JL, Weyer H, Scholtz JE, Leithner D, Spandorfer A, et al. Endoleaks after endovascular aortic aneurysm repair: improved detection with noise-optimized virtual monoenergetic dual-energy CT. Eur J Radiol. 2017;94:125–32.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zhang LJ, Peng J, Wu SY, Wang ZJ, Wu XS, Zhou CS, et al. Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study. Eur Radiol. 2010;20(9):2257–64.PubMedCrossRefGoogle Scholar
  51. 51.
    De Cecco CN, Buffa V, Fedeli S, Luzietti M, Vallone A, Ruopoli R, et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol. 2010;20(12):2870–5.PubMedCrossRefGoogle Scholar
  52. 52.
    De Cecco CN, Darnell A, Macias N, Ayuso JR, Rodriguez S, Rimola J, et al. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Investig Radiol. 2013;48(1):1–9.CrossRefGoogle Scholar
  53. 53.
    De Cecco CN, Muscogiuri G, Schoepf UJ, Caruso D, Wichmann JL, Cannao PM, et al. Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction. Eur J Radiol. 2016;85(7):1257–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252(2):433–40.CrossRefGoogle Scholar
  55. 55.
    Graser A, Becker CR, Staehler M, Clevert DA, Macari M, Arndt N, et al. Single-phase dual-energy CT allows for characterization of renal masses as benign or malignant. Investig Radiol. 2010;45(7):399–405.CrossRefGoogle Scholar
  56. 56.
    Mileto A, Mazziotti S, Gaeta M, Bottari A, Zimbaro F, Giardina C, et al. Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol. 2012;67(4):334–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Sun H, Xue HD, Wang YN, Qian JM, Yu JC, Zhu F, et al. Dual-source dual-energy computed tomography angiography for active gastrointestinal bleeding: a preliminary study. Clin Radiol. 2013;68(2):139–47.PubMedCrossRefGoogle Scholar
  58. 58.
    Chai Y, Xing J, Gao J, Lv P, Liang P, Liu J, et al. Feasibility of virtual nonenhanced images derived from single-source fast kVp-switching dual-energy CT in evaluating gastric tumors. Eur J Radiol. 2016;85(2):366–72.PubMedCrossRefGoogle Scholar
  59. 59.
    Li Y, Li Y, Jackson A, Li X, Huang N, Guo C, et al. Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates. Abdom Radiol (NY). 2017;42(1):312–21.CrossRefGoogle Scholar
  60. 60.
    Mayo-Smith WW, Song JH, Boland GL, Francis IR, Israel GM, Mazzaglia PJ, et al. Management of incidental adrenal masses: a white paper of the ACR incidental findings committee. J Am Coll Radiol. 2017;14(8):1038–44.PubMedCrossRefGoogle Scholar
  61. 61.
    Gore RM, Pickhardt PJ, Mortele KJ, Fishman EK, Horowitz JM, Fimmel CJ, et al. Management of incidental liver lesions on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol. 2017;14(11):1429–37.PubMedCrossRefGoogle Scholar
  62. 62.
    Patel BN, Alexander L, Allen B, Berland L, Borhani A, Mileto A, et al. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol (NY). 2017;42(3):676–87.CrossRefGoogle Scholar
  63. 63.
    Song JH, Chaudhry FS, Mayo-Smith WW. The incidental adrenal mass on CT: prevalence of adrenal disease in 1,049 consecutive adrenal masses in patients with no known malignancy. AJR Am J Roentgenol. 2008;190(5):1163–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Boland GW, Lee MJ, Gazelle GS, Halpern EF, McNicholas MM, Mueller PR. Characterization of adrenal masses using unenhanced CT: an analysis of the CT literature. AJR Am J Roentgenol. 1998;171(1):201–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Ho LM, Marin D, Neville AM, Barnhart HX, Gupta RT, Paulson EK, et al. Characterization of adrenal nodules with dual-energy CT: can virtual unenhanced attenuation values replace true unenhanced attenuation values? AJR Am J Roentgenol. 2012;198(4):840–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Gnannt R, Fischer M, Goetti R, Karlo C, Leschka S, Alkadhi H. Dual-energy CT for characterization of the incidental adrenal mass: preliminary observations. AJR Am J Roentgenol. 2012;198(1):138–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Botsikas D, Triponez F, Boudabbous S, Hansen C, Becker CD, Montet X. Incidental adrenal lesions detected on enhanced abdominal dual-energy CT: can the diagnostic workup be shortened by the implementation of virtual unenhanced images? Eur J Radiol. 2014;83(10):1746–51.PubMedCrossRefGoogle Scholar
  68. 68.
    Helck A, Hummel N, Meinel FG, Johnson T, Nikolaou K, Graser A. Can single-phase dual-energy CT reliably identify adrenal adenomas? Eur Radiol. 2014;24(7):1636–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Connolly MJ, McInnes MDF, El-Khodary M, McGrath TA, Schieda N. Diagnostic accuracy of virtual non-contrast enhanced dual-energy CT for diagnosis of adrenal adenoma: a systematic review and meta-analysis. Eur Radiol. 2017;27(10):4324–35.PubMedCrossRefGoogle Scholar
  70. 70.
    Mileto A, Nelson RC, Marin D, Roy Choudhury K, Ho LM. Dual-energy multidetector CT for the characterization of incidental adrenal nodules: diagnostic performance of contrast-enhanced material density analysis. Radiology. 2015;274(2):445–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Ju Y, Liu A, Dong Y, Liu Y, Wang H, Sun M, et al. The value of nonenhanced single-source dual-energy CT for differentiating metastases from adenoma in adrenal glands. Acad Radiol. 2015;22(7):834–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Martin SS, Weidinger S, Czwikla R, Kaltenbach B, Albrecht MH, Lenga L, et al. Iodine and fat quantification for differentiation of adrenal gland adenomas from metastases using third-generation dual-source dual-energy computed tomography. Investig Radiol. 2018;53(3):173–8.CrossRefGoogle Scholar
  73. 73.
    Turk C, Petrik A, Sarica K, Seitz C, Skolarikos A, Straub M, et al. EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol. 2016;69(3):468–74.PubMedCrossRefGoogle Scholar
  74. 74.
    Ma Q, Fang L, Su R, Ma L, Xie G, Cheng Y. Uric acid stones, clinical manifestations and therapeutic considerations. Postgrad Med J. 2018;94(1114):458–62.PubMedCrossRefGoogle Scholar
  75. 75.
    Nestler T, Nestler K, Neisius A, Isbarn H, Netsch C, Waldeck S, et al. Diagnostic accuracy of third-generation dual-source dual-energy CT: a prospective trial and protocol for clinical implementation. World J Urol. 2019;37(4):735–41.PubMedCrossRefGoogle Scholar
  76. 76.
    Habashy D, Xia R, Ridley W, Chan L, Ridley L. Impact of dual energy characterization of urinary calculus on management. J Med Imaging Radiat Oncol. 2016;60(5):624–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Hidas G, Eliahou R, Duvdevani M, Coulon P, Lemaitre L, Gofrit ON, et al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010;257(2):394–401.PubMedCrossRefGoogle Scholar
  78. 78.
    Lombardo F, Bonatti M, Zamboni GA, Avesani G, Oberhofer N, Bonelli M, et al. Uric acid versus non-uric acid renal stones: in vivo differentiation with spectral CT. Clin Radiol. 2017;72(6):490–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Stolzmann P, Kozomara M, Chuck N, Muntener M, Leschka S, Scheffel H, et al. In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2010;35(5):629–35.PubMedCrossRefGoogle Scholar
  80. 80.
    Qu M, Ramirez-Giraldo JC, Leng S, Williams JC, Vrtiska TJ, Lieske JC, et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol. 2011;196(6):1279–87.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Leng S, Shiung M, Ai S, Qu M, Vrtiska TJ, Grant KL, et al. Feasibility of discriminating uric acid from non-uric acid renal stones using consecutive spatially registered low- and high-energy scans obtained on a conventional CT scanner. AJR Am J Roentgenol. 2015;204(1):92–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zheng X, Liu Y, Li M, Wang Q, Song B. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: a meta-analysis. Eur J Radiol. 2016;85(10):1843–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Marcus RP, Fletcher JG, Ferrero A, Leng S, Halaweish AF, Gutjahr R, et al. Detection and characterization of renal stones by using photon-counting-based CT. Radiology. 2018;289:436–42:180126PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Franken A, Gevenois PA, Muylem AV, Howarth N, Keyzer C. In vivo differentiation of uric acid versus non-uric acid urinary calculi with third-generation dual-source dual-energy CT at reduced radiation dose. AJR Am J Roentgenol. 2018;210(2):358–63.PubMedCrossRefGoogle Scholar
  85. 85.
    Boellaard TN, Henneman OD, Streekstra GJ, Venema HW, Nio CY, van Dorth-Rombouts MC, et al. The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping. Clin Radiol. 2013;68(8):799–806.PubMedCrossRefGoogle Scholar
  86. 86.
    Schaeffer B, Johnson TR, Mang T, Kreis ME, Reiser MF, Graser A. Dual-energy CT colonography for preoperative “one-stop” staging in patients with colonic neoplasia. Acad Radiol. 2014;21(12):1567–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Gong HX, Zhang KB, Wu LM, Baigorri BF, Yin Y, Geng XC, et al. Dual energy spectral CT imaging for colorectal cancer grading: a preliminary study. PLoS One. 2016;11(2):e0147756.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chuang-Bo Y, Tai-Ping H, Hai-Feng D, Yong-Jun J, Xi-Rong Z, Guang-Ming M, et al. Quantitative assessment of the degree of differentiation in colon cancer with dual-energy spectral CT. Abdom Radiol (NY). 2017;42(11):2591–6.CrossRefGoogle Scholar
  89. 89.
    Potretzke TA, Brace CL, Lubner MG, Sampson LA, Willey BJ, Lee FT Jr. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model. Radiology. 2015;275(1):119–26.CrossRefGoogle Scholar
  90. 90.
    Darras KE, McLaughlin PD, Kang H, Black B, Walshe T, Chang SD, et al. Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol. 2016;85(5):950–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Lourenco PDM, Rawski R, Mohammed MF, Khosa F, Nicolaou S, McLaughlin P. Dual-energy CT iodine mapping and 40-keV monoenergetic applications in the diagnosis of acute bowel ischemia. AJR Am J Roentgenol. 2018;211(3):564–70.PubMedCrossRefGoogle Scholar
  92. 92.
    Villanueva Campos AM, Tardaguila de la Fuente G, Utrera Perez E, Jurado Basildo C, Mera Fernandez D, Martinez Rodriguez C. Value of dual-energy CT enterography in the analysis of pathological bowel segments in patients with Crohn’s disease. Radiologia. 2018;60(3):223–9.PubMedCrossRefGoogle Scholar
  93. 93.
    De Kock I, Delrue L, Lecluyse C, Hindryckx P, De Vos M, Villeirs G. Feasibility study using iodine quantification on dual-energy CT enterography to distinguish normal small bowel from active inflammatory Crohn’s disease. Acta Radiol. 2019;60(6):679–86.Google Scholar
  94. 94.
    Lee SM, Kim SH, Ahn SJ, Kang HJ, Kang JH, Han JK. Virtual monoenergetic dual-layer, dual-energy CT enterography: optimization of keV settings and its added value for Crohn’s disease. Eur Radiol. 2018;28(6):2525–34.PubMedCrossRefGoogle Scholar
  95. 95.
    Hyodo T, Hori M, Lamb P, Sasaki K, Wakayama T, Chiba Y, et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: experimental validation. Radiology. 2017;282(2):381–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Cao Q, Shang S, Han X, Cao D, Zhao L. Evaluation on heterogeneity of fatty liver in rats: a multiparameter quantitative analysis by dual energy CT. Acad Radiol. 2019;26(5):e47–e55.PubMedCrossRefGoogle Scholar
  97. 97.
    McNamara MM, Little MD, Alexander LF, Carroll LV, Beasley TM, Morgan DE. Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT. Abdom Imaging. 2015;40(5):1230–40.PubMedCrossRefGoogle Scholar
  98. 98.
    Patel BN, Thomas JV, Lockhart ME, Berland LL, Morgan DE. Single-source dual-energy spectral multidetector CT of pancreatic adenocarcinoma: optimization of energy level viewing significantly increases lesion contrast. Clin Radiol. 2013;68(2):148–54.PubMedCrossRefGoogle Scholar
  99. 99.
    Lin XZ, Wu ZY, Tao R, Guo Y, Li JY, Zhang J, et al. Dual energy spectral CT imaging of insulinoma-value in preoperative diagnosis compared with conventional multi-detector CT. Eur J Radiol. 2012;81(10):2487–94.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Parakh A, Patino M, Muenzel D, Kambadakone A, Sahani DV. Role of rapid kV-switching dual-energy CT in assessment of post-surgical local recurrence of pancreatic adenocarcinoma. Abdom Radiol (NY). 2018;43(2):497–504.CrossRefGoogle Scholar
  101. 101.
    Shuman WP, Green DE, Busey JM, Mitsumori LM, Choi E, Koprowicz KM, et al. Dual-energy liver CT: effect of monochromatic imaging on lesion detection, conspicuity, and contrast-to-noise ratio of hypervascular lesions on late arterial phase. AJR Am J Roentgenol. 2014;203(3):601–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Ascenti G, Sofia C, Mazziotti S, Silipigni S, D’Angelo T, Pergolizzi S, et al. Dual-energy CT with iodine quantification in distinguishing between bland and neoplastic portal vein thrombosis in patients with hepatocellular carcinoma. Clin Radiol. 2016;71(9):938 e1–9.CrossRefGoogle Scholar
  103. 103.
    Marin D, Davis D, Roy Choudhury K, Patel B, Gupta RT, Mileto A, et al. Characterization of small focal renal lesions: diagnostic accuracy with single-phase contrast-enhanced dual-energy CT with material attenuation analysis compared with conventional attenuation measurements. Radiology. 2017;284(3):737–47.PubMedCrossRefGoogle Scholar
  104. 104.
    Hou WS, Wu HW, Yin Y, Cheng JJ, Zhang Q, Xu JR. Differentiation of lung cancers from inflammatory masses with dual-energy spectral CT imaging. Acad Radiol. 2015;22(3):337–44.PubMedCrossRefGoogle Scholar
  105. 105.
    Chang S, Hur J, Im DJ, Suh YJ, Hong YJ, Lee HJ, et al. Dual-energy CT-based iodine quantification for differentiating pulmonary artery sarcoma from pulmonary thromboembolism: a pilot study. Eur Radiol. 2016;26(9):3162–70.PubMedCrossRefGoogle Scholar
  106. 106.
    Lee SH, Hur J, Kim YJ, Lee HJ, Hong YJ, Choi BW. Additional value of dual-energy CT to differentiate between benign and malignant mediastinal tumors: an initial experience. Eur J Radiol. 2013;82(11):2043–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Li X, Meng X, Ye Z. Iodine quantification to characterize primary lesions, metastatic and non-metastatic lymph nodes in lung cancers by dual energy computed tomography: an initial experience. Eur J Radiol. 2016;85(6):1219–23.PubMedCrossRefGoogle Scholar
  108. 108.
    Rizzo S, Radice D, Femia M, De Marco P, Origgi D, Preda L, et al. Metastatic and non-metastatic lymph nodes: quantification and different distribution of iodine uptake assessed by dual-energy CT. Eur Radiol. 2018;28(2):760–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Jiang C, Yang P, Lei J, Li J, Yan K, Li F, et al. The application of iodine quantitative information obtained by dual-source dual-energy computed tomography on chemoradiotherapy effect monitoring for cervical cancer: a preliminary study. J Comput Assist Tomogr. 2017;41(5):737–45.PubMedCrossRefGoogle Scholar
  110. 110.
    Ren Y, Jiao Y, Ge W, Zhang L, Hua Y, Li C, et al. Dual-energy computed tomography-based iodine quantitation for response evaluation of lung cancers to chemoradiotherapy/radiotherapy: a comparison with fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography-based positron emission tomography/computed tomography response evaluation criterion in solid tumors. J Comput Assist Tomogr. 2018;42(4):614–22.PubMedGoogle Scholar
  111. 111.
    Aoki M, Hirose K, Sato M, Akimoto H, Kawaguchi H, Hatayama Y, et al. Prognostic impact of average iodine density assessed by dual-energy spectral imaging for predicting lung tumor recurrence after stereotactic body radiotherapy. J Radiat Res. 2016;57(4):381–6.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ, Ahn MJ, et al. Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol. 2012;13(6):702–10.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Baxa J, Matouskova T, Krakorova G, Schmidt B, Flohr T, Sedlmair M, et al. Dual-phase dual-energy CT in patients treated with erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol. 2016;26(8):2828–36.CrossRefGoogle Scholar
  114. 114.
    Hellbach K, Sterzik A, Sommer W, Karpitschka M, Hummel N, Casuscelli J, et al. Dual energy CT allows for improved characterization of response to antiangiogenic treatment in patients with metastatic renal cell cancer. Eur Radiol. 2017;27(6):2532–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Meyer M, Hohenberger P, Apfaltrer P, Henzler T, Dinter DJ, Schoenberg SO, et al. CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol. 2013;82(6):923–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Li J, Fang M, Wang R, Dong D, Tian J, Liang P, et al. Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer. Eur Radiol. 2018;28:5241–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Shimamoto H, Iwano S, Umakoshi H, Kawaguchi K, Naganawa S. Evaluation of locoregional invasiveness of small-sized non-small cell lung cancers by enhanced dual-energy computed tomography. Cancer Imaging. 2016;16(1):18.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Li GJ, Gao J, Wang GL, Zhang CQ, Shi H, Deng K. Correlation between vascular endothelial growth factor and quantitative dual-energy spectral CT in non-small-cell lung cancer. Clin Radiol. 2016;71(4):363–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Pache G, Krauss B, Strohm P, Saueressig U, Blanke P, Bulla S, et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions – feasibility study. Radiology. 2010;256(2):617–24.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Guggenberger R, Gnannt R, Hodler J, Krauss B, Wanner GA, Csuka E, et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology. 2012;264(1):164–73.PubMedCrossRefGoogle Scholar
  121. 121.
    Bierry G, Venkatasamy A, Kremer S, Dosch JC, Dietemann JL. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skelet Radiol. 2014;43(4):485–92.CrossRefGoogle Scholar
  122. 122.
    Suh CH, Yun SJ, Jin W, Lee SH, Park SY, Ryu CW. Diagnostic performance of dual-energy CT for the detection of bone marrow oedema: a systematic review and meta-analysis. Eur Radiol. 2018;28:4182–94.PubMedCrossRefGoogle Scholar
  123. 123.
    Diekhoff T, Engelhard N, Fuchs M, Pumberger M, Putzier M, Mews J, et al. Single-source dual-energy computed tomography for the assessment of bone marrow oedema in vertebral compression fractures: a prospective diagnostic accuracy study. Eur Radiol. 2019;29(1):31–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Kaup M, Wichmann JL, Scholtz JE, Beeres M, Kromen W, Albrecht MH, et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR imaging. Radiology. 2016;280(2):510–9.PubMedCrossRefGoogle Scholar
  125. 125.
    Mallinson PI, Coupal TM, McLaughlin PD, Nicolaou S, Munk PL, Ouellette HA. Dual-energy CT for the musculoskeletal system. Radiology. 2016;281(3):690–707.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Glazebrook KN, Guimaraes LS, Murthy NS, Black DF, Bongartz T, Manek NJ, et al. Identification of intraarticular and periarticular uric acid crystals with dual-energy CT: initial evaluation. Radiology. 2011;261(2):516–24.PubMedCrossRefGoogle Scholar
  127. 127.
    Bongartz T, Glazebrook KN, Kavros SJ, Murthy NS, Merry SP, Franz WB 3rd, et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann Rheum Dis. 2015;74(6):1072–7.CrossRefGoogle Scholar
  128. 128.
    Yu Z, Mao T, Xu Y, Li T, Wang Y, Gao F, et al. Diagnostic accuracy of dual-energy CT in gout: a systematic review and meta-analysis. Skelet Radiol. 2018;47:1587–93.CrossRefGoogle Scholar
  129. 129.
    Ramon A, Bohm-Sigrand A, Pottecher P, Richette P, Maillefert JF, Devilliers H, et al. Role of dual-energy CT in the diagnosis and follow-up of gout: systematic analysis of the literature. Clin Rheumatol. 2018;37(3):587–95.PubMedCrossRefGoogle Scholar
  130. 130.
    Mallinson PI, Coupal T, Reisinger C, Chou H, Munk PL, Nicolaou S, et al. Artifacts in dual-energy CT gout protocol: a review of 50 suspected cases with an artifact identification guide. AJR Am J Roentgenol. 2014;203(1):W103–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Pagniez J, Legrand L, Khung S, Faivre JB, Duhamel A, Krauss A, et al. Metal artifact reduction on chest computed tomography examinations: comparison of the iterative metallic artefact reduction algorithm and the monoenergetic approach. J Comput Assist Tomogr. 2017;41(3):446–54.PubMedCrossRefGoogle Scholar
  132. 132.
    Laukamp KR, Lennartz S, Neuhaus VF, Grosse Hokamp N, Rau R, Le Blanc M, et al. CT metal artifacts in patients with total hip replacements: for artifact reduction monoenergetic reconstructions and post-processing algorithms are both efficient but not similar. Eur Radiol. 2018;28:4524–33.PubMedCrossRefGoogle Scholar
  133. 133.
    Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu Y, et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 2013;82(8):e360–6.PubMedCrossRefGoogle Scholar
  134. 134.
    Guggenberger R, Winklhofer S, Osterhoff G, Wanner GA, Fortunati M, Andreisek G, et al. Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels. Eur Radiol. 2012;22(11):2357–64.PubMedCrossRefGoogle Scholar
  135. 135.
    Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR. Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21(7):1424–9.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Grosse Hokamp N, Laukamp KR, Lennartz S, Zopfs D, Abdullayev N, Neuhaus VF, et al. Artifact reduction from dental implants using virtual monoenergetic reconstructions from novel spectral detector CT. Eur J Radiol. 2018;104:136–42.PubMedCrossRefGoogle Scholar
  137. 137.
    Kuchenbecker S, Faby S, Sawall S, Lell M, Kachelriess M. Dual energy CT: how well can pseudo-monochromatic imaging reduce metal artifacts? Med Phys. 2015;42(2):1023–36.PubMedCrossRefGoogle Scholar
  138. 138.
    Kidoh M, Utsunomiya D, Oda S, Nakaura T, Funama Y, Yuki H, et al. CT venography after knee replacement surgery: comparison of dual-energy CT-based monochromatic imaging and single-energy metal artifact reduction techniques on a 320-row CT scanner. Acta Radiol Open. 2017;6(2):2058460117693463.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Cha J, Kim HJ, Kim ST, Kim YK, Kim HY, Park GM. Dual-energy CT with virtual monochromatic images and metal artifact reduction software for reducing metallic dental artifacts. Acta Radiol. 2017;58(11):1312–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Winklhofer S, Hinzpeter R, Stocker D, Baltsavias G, Michels L, Burkhardt JK, et al. Combining monoenergetic extrapolations from dual-energy CT with iterative reconstructions: reduction of coil and clip artifacts from intracranial aneurysm therapy. Neuroradiology. 2018;60(3):281–91.PubMedCrossRefGoogle Scholar
  141. 141.
    Yue D, Fan Rong C, Ning C, Liang H, Ai Lian L, Ru Xin W, et al. Reduction of metal artifacts from unilateral hip arthroplasty on dual-energy CT with metal artifact reduction software. Acta Radiol. 2018;59(7):853–60.PubMedCrossRefGoogle Scholar
  142. 142.
    Borhani AA, Kulzer M, Iranpour N, Ghodadra A, Sparrow M, Furlan A, et al. Comparison of true unenhanced and virtual unenhanced (VUE) attenuation values in abdominopelvic single-source rapid kilovoltage-switching spectral CT. Abdom Radiol (NY). 2017;42(3):710–7.CrossRefGoogle Scholar
  143. 143.
    Durieux P, Gevenois PA, Muylem AV, Howarth N, Keyzer C. Abdominal attenuation values on virtual and true unenhanced images obtained with third-generation dual-source dual-energy CT. AJR Am J Roentgenol. 2018;210(5):1042–58.PubMedCrossRefGoogle Scholar
  144. 144.
    Obmann MM, Kelsch V, Cosentino A, Hofmann V, Boll DT, Benz MR. Interscanner and intrascanner comparison of virtual unenhanced attenuation values derived from twin beam dual-energy and dual-source, dual-energy computed tomography. Invest Radiol. 2019;54(1):1–6.PubMedCrossRefGoogle Scholar
  145. 145.
    Jacobsen MC, Schellingerhout D, Wood CA, Tamm EP, Godoy MC, Sun J, et al. Intermanufacturer comparison of dual-energy CT iodine quantification and monochromatic attenuation: a phantom study. Radiology. 2018;287(1):224–34.PubMedCrossRefGoogle Scholar
  146. 146.
    Euler A, Solomon J, Mazurowski MA, Samei E, Nelson RC. How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol. 2019;29(4):2069–78.PubMedCrossRefGoogle Scholar
  147. 147.
    Kang MJ, Park CM, Lee CH, Goo JM, Lee HJ. Focal iodine defects on color-coded iodine perfusion maps of dual-energy pulmonary CT angiography images: a potential diagnostic pitfall. AJR Am J Roentgenol. 2010;195(5):W325–30.PubMedCrossRefGoogle Scholar
  148. 148.
    Wortman JR, Sodickson AD. Pearls, pitfalls, and problems in dual-energy computed tomography imaging of the body. Radiol Clin N Am. 2018;56(4):625–40.PubMedCrossRefGoogle Scholar
  149. 149.
    Moon JW, Park BK, Kim CK, Park SY. Evaluation of virtual unenhanced CT obtained from dual-energy CT urography for detecting urinary stones. Br J Radiol. 2012;85(1014):e176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Mangold S, Thomas C, Fenchel M, Vuust M, Krauss B, Ketelsen D, et al. Virtual nonenhanced dual-energy CT urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology. 2012;264(1):119–25.PubMedCrossRefGoogle Scholar
  151. 151.
    Sahni VA, Shinagare AB, Silverman SG. Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase. Clin Radiol. 2013;68(3):264–71.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • André Euler
    • 1
  • Sebastian T. Schindera
    • 2
  1. 1.Institute of Diagnostic and Interventional Radiology, University Hospital ZurichZurichSwitzerland
  2. 2.Institute of Radiology, Cantonal Hospital AarauAarauSwitzerland

Personalised recommendations