Advertisement

CT Practice Optimization

  • Mannudeep K. KalraEmail author
  • Fatemeh Homayounieh
  • Ramandeep Singh
Chapter

Abstract

Based on the clinical perspective, the three essential elements of CT practice optimization are appropriate clinical indications for the CT scan, CT protocol design based on a team-based approach, and adjustments of scan parameters according to patient size, body region, and clinical indication. Dose monitoring can identify CT protocols with excessive doses that need attention and modifications. Active surveillance strategies ensure a good diagnostic quality of performed CT examinations while adhering to the ALARA (as low as reasonably achievable) principle for radiation doses.

Keywords

CT practice optimization Appropriate clinical indications Scan parameters CT protocol design Radiation dose monitoring 

References

  1. 1.
    O'Connor SD, Sodickson AD, Ip IK, Raja AS, Healey MJ, Schneider LI, et al. Journal club: requiring clinical justification to override repeat imaging decision support: impact on CT use. AJR Am J Roentgenol. 2014;203(5):W482–90.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Street M, Brady Z, Van Every B, Thomson KR. Radiation exposure and the justification of computed tomography scanning in an Australian hospital emergency department. Intern Med J. 2009;39(11):713–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Vartanians VM, Sistrom CL, Weilburg JB, Rosenthal DI, Thrall JH. Increasing the appropriateness of outpatient imaging: effects of a barrier to ordering low-yield examinations. Radiology. 2010;255(3):842–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Sistrom CL, Weilburg JB, Dreyer KJ, Ferris TG. Provider feedback about imaging appropriateness by using scores from order entry decision support: raw rates misclassify outliers. Radiology. 2015;275(2):469–79.PubMedCrossRefGoogle Scholar
  5. 5.
    Moriarity AK, Klochko C, O'Brien M, Halabi S. The effect of clinical decision support for advanced inpatient imaging. J Am Coll Radiol: JACR. 2015;12(4):358–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Frush DP. Deciding why and when to use CT in children: a radiologist’s perspective. Pediatr Radiol. 2014;44(Suppl 3):404–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Sistrom CL, Dang PA, Weilburg JB, Dreyer KJ, Rosenthal DI, Thrall JH. Effect of computerized order entry with integrated decision support on the growth of outpatient procedure volumes: seven-year time series analysis. Radiology. 2009;251(1):147–55.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenthal DI, Weilburg JB, Schultz T, Miller JC, Nixon V, Dreyer KJ, et al. Radiology order entry with decision support: initial clinical experience. J Am Coll Radiol: JACR. 2006;3(10):799–806.PubMedCrossRefGoogle Scholar
  9. 9.
    Morin RL, Rosenthal DI, Stout MB. Radiology order entry: features and performance requirements. J Am Coll Radiol: JACR. 2006;3(7):554–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Huber T, Gaskin CM, Krishnaraj A. Early experience with implementation of a commercial decision-support product for imaging order entry. Curr Probl Diagn Radiol. 2016;45(2):133–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta A, Ip IK, Raja AS, Andruchow JE, Sodickson A, Khorasani R. Effect of clinical decision support on documented guideline adherence for head CT in emergency department patients with mild traumatic brain injury. J Am Med Inform Assoc: JAMIA. 2014;21(e2):e347–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta A, Raja AS, Khorasani R. Examining clinical decision support integrity: is clinician self-reported data entry accurate? J Am Med Inform Assoc: JAMIA. 2014;21(1):23–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Brink JA. Clinical decision-making tools for exam selection, reporting and dose tracking. Pediatr Radiol. 2014;44(Suppl 3):418–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Gimbel RW, Fontelo P, Stephens MB, Olsen CH, Bunt C, Ledford CJ, et al. Radiation exposure and cost influence physician medical image decision making: a randomized controlled trial. Med Care. 2013;51(7):628–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Duszak R Jr, Berlin JW. Utilization management in radiology, part 2: perspectives and future directions. J Am Coll Radiol: JACR. 2012;9(10):700–3.PubMedCrossRefGoogle Scholar
  16. 16.
    Duszak R Jr, Berlin JW. Utilization management in radiology, part 1: rationale, history, and current status. J Am Coll Radiol: JACR. 2012;9(10):694–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rehani MM, Berris T. International atomic energy agency study with referring physicians on patient radiation exposure and its tracking: a prospective survey using a web-based questionnaire. BMJ Open. 2012;2(5).PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zafar HM, Mills AM, Khorasani R, Langlotz CP. Clinical decision support for imaging in the era of the patient protection and affordable care act. J Am Coll Radiol: JACR. 2012;9(12):907–18.e5.PubMedCrossRefGoogle Scholar
  19. 19.
    Yousem DM. Combating overutilization: radiology benefits managers versus order entry decision support. Neuroimaging Clin N Am. 2012;22(3):497–509.PubMedCrossRefGoogle Scholar
  20. 20.
    Ip IK, Schneider LI, Hanson R, Marchello D, Hultman P, Viera M, et al. Adoption and meaningful use of computerized physician order entry with an integrated clinical decision support system for radiology: ten-year analysis in an urban teaching hospital. J Am Coll Radiol: JACR. 2012;9(2):129–36.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tabari A, Lo Gullo R, Murugan V, Otrakji A, Digumarthy S, Kalra M. Recent advances in computed tomographic technology: cardiopulmonary imaging applications. J Thorac Imaging. 2017;32(2):89–100.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Singh S, Kalra MK, Ali Khawaja RD, Padole A, Pourjabbar S, Lira D, et al. Radiation dose optimization and thoracic computed tomography. Radiol Clin N Am. 2014;52(1):1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Singh S, Kalra MK, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in chest CT protocols. J Am Coll Radiol: JACR. 2011;8(9):663–5.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tack D. Radiation dose optimization in thoracic imaging. JBR-BTR: Organe Soc R Belge Radiol (SRBR) = Orgaan van de Koninklijke Belgische Vereniging voor Radiologie (KBVR). 2010;93(1):15–9.Google Scholar
  25. 25.
    Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230(3):619–28.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Sung MK, Singh S, Kalra MK. Current status of low dose multi-detector CT in the urinary tract. World J Radiol. 2011;3(11):256–65.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Kalra MK, Maher MM, Rizzo S, Kanarek D, Shepard JA. Radiation exposure from chest CT: issues and strategies. J Korean Med Sci. 2004;19(2):159–66.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Maher MM, Kalra MK, Toth TL, Wittram C, Saini S, Shepard J. Application of rational practice and technical advances for optimizing radiation dose for chest CT. J Thorac Imaging. 2004;19(1):16–23.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kalra MK, Sodickson AD, Mayo-Smith WW. CT radiation: key concepts for gentle and wise use. Radiographics: Rev Publ Radiol Soc N America, Inc. 2015;35(6):1706–21.CrossRefGoogle Scholar
  30. 30.
    Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol. 2015;204(4):W384–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Trattner S, Pearson GD, Chin C, Cody DD, Gupta R, Hess CP, et al. Standardization and optimization of CT protocols to achieve low dose. J Am Coll Radiol: JACR. 2014;11(3):271–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Tack D, Kalra MK, Gevenois PA. Radiation dose from multidetector CT. 2nd ed. Heidelberg: Springer; 2012.. xviii, 649 p. pCrossRefGoogle Scholar
  33. 33.
    Padole A, Digumarthy S, Flores E, Madan R, Mishra S, Sharma A, et al. Assessment of chest CT at CTDIvol less than 1 mGy with iterative reconstruction techniques. Br J Radiol. 2017;90(1071):20160625.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Padole A, Sainani N, Lira D, Khawaja RD, Pourjabbar S, Lo Gullo R, et al. Assessment of sub-milli-sievert abdominal computed tomography with iterative reconstruction techniques of different vendors. World J Radiol. 2016;8(6):618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Khawaja RD, Singh S, Blake M, Harisinghani M, Choy G, Karaosmanoglu A, et al. Ultra-low dose abdominal MDCT: using a knowledge-based iterative model reconstruction technique for substantial dose reduction in a prospective clinical study. Eur J Radiol. 2015;84(1):2–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Khawaja RD, Singh S, Blake M, Harisinghani M, Choy G, Karaosmanoglu A, et al. Ultralow-dose abdominal computed tomography: comparison of 2 iterative reconstruction techniques in a prospective clinical study. J Comput Assist Tomogr. 2015;39(4):489–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Khawaja RD, Singh S, Otrakji A, Padole A, Lim R, Nimkin K, et al. Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol. 2015;45(7):1046–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Singh S, Khawaja RD, Pourjabbar S, Padole A, Lira D, Kalra MK. Iterative image reconstruction and its role in cardiothoracic computed tomography. J Thorac Imaging. 2013;28(6):355–67.PubMedCrossRefGoogle Scholar
  39. 39.
    Kalra MK, Woisetschlager M, Dahlstrom N, Singh S, Lindblom M, Choy G, et al. Radiation dose reduction with Sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J Comput Assist Tomogr. 2012;36(3):339–46.PubMedCrossRefGoogle Scholar
  40. 40.
    Singh S, Kalra MK, Shenoy-Bhangle AS, Saini A, Gervais DA, Westra SJ, et al. Radiation dose reduction with hybrid iterative reconstruction for pediatric CT. Radiology. 2012;263(2):537–46.PubMedCrossRefGoogle Scholar
  41. 41.
    Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology. 2011;259(2):565–73.PubMedCrossRefGoogle Scholar
  42. 42.
    Prakash P, Kalra MK, Ackman JB, Digumarthy SR, Hsieh J, Do S, et al. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology. 2010;256(1):261–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Prakash P, Kalra MK, Digumarthy SR, Hsieh J, Pien H, Singh S, et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr. 2010;34(1):40–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J, Blake MA, et al. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Investig Radiol. 2010;45(4):202–10.CrossRefGoogle Scholar
  45. 45.
    Schmid AI, Uder M, Lell MM. Reaching for better image quality and lower radiation dose in head and neck CT: advanced modeled and sinogram-affirmed iterative reconstruction in combination with tube voltage adaptation. Dentomaxillofac Radiol. 2017;46(1):20160131.PubMedCrossRefGoogle Scholar
  46. 46.
    Scholtz JE, Wichmann JL, Bennett DW, Leithner D, Bauer RW, Vogl TJ, et al. Detecting intracranial hemorrhage using automatic tube current modulation with advanced modeled iterative reconstruction in unenhanced head single- and dual-energy dual-source CT. AJR Am J Roentgenol. 2017;208(5):1089–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Soenen O, Balliauw C, Oyen R, Zanca F. Dose and image quality in low-dose CT for urinary stone disease: added value of automatic tube current modulation and iterative reconstruction techniques. Radiat Prot Dosim. 2017;174(2):242–9.Google Scholar
  48. 48.
    Chen CM, Lin YY, Hsu MY, Hung CF, Liao YL, Tsai HY. Performance of adaptive iterative dose reduction 3D integrated with automatic tube current modulation in radiation dose and image noise reduction compared with filtered-back projection for 80-kVp abdominal CT: anthropomorphic phantom and patient study. Eur J Radiol. 2016;85(9):1666–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Hata A, Yanagawa M, Honda O, Gyobu T, Ueda K, Tomiyama N. Submillisievert CT using model-based iterative reconstruction with lung-specific setting: an initial phantom study. Eur Radiol. 2016;26:4457.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee S, Kwon H, Cho J. The detection of focal liver lesions using abdominal CT: a comparison of image quality between adaptive statistical iterative reconstruction V and adaptive statistical iterative reconstruction. Acad Radiol. 2016;23(12):1532–8.PubMedCrossRefGoogle Scholar
  51. 51.
    McLaughlin PD, Murphy KP, Twomey M, O'Neill SB, Moloney F, O'Connor OJ, et al. Pure iterative reconstruction improves image quality in computed tomography of the abdomen and pelvis acquired at substantially reduced radiation doses in patients with active Crohn disease. J Comput Assist Tomogr. 2016;40(2):225–33.PubMedCrossRefGoogle Scholar
  52. 52.
    Schafer ML, Ludemann L, Boning G, Kahn J, Fuchs S, Hamm B, et al. Radiation dose reduction in CT with adaptive statistical iterative reconstruction (ASIR) for patients with bronchial carcinoma and intrapulmonary metastases. Clin Radiol. 2016;71(5):442–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Volgyes D, Pedersen M, Stray-Pedersen A, Waaler D, Martinsen AC. How different iterative and filtered Back projection kernels affect computed tomography numbers and low contrast detectability. J Comput Assist Tomogr. 2017;41(1):75–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Viry A, Aberle C, Racine D, Knebel JF, Schindera ST, Schmidt S, et al. Effects of various generations of iterative CT reconstruction algorithms on low-contrast detectability as a function of the effective abdominal diameter: a quantitative task-based phantom study. Phys Med: PM: Int J Devoted Appl Phys Med Biol: Off J Ital Assoc Biomed Phys (AIFB). 2018;48:111–8.Google Scholar
  55. 55.
    Furuya K, Nambu A, Nakamura K, Watanabe R, Nogata Y, Komiyama T, et al. Modified method for automatic exposure control in pediatric brain CT-application of the standard deviation value method by use of patient's age and head size. Nihon Hoshasen Gijutsu Gakkai zasshi. 2010;66(4):334–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Gnannt R, Winklehner A, Goetti R, Schmidt B, Kollias S, Alkadhi H. Low kilovoltage CT of the neck with 70 kVp: comparison with a standard protocol. AJNR Am J Neuroradiol. 2012;33(6):1014–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Tan JS, Tan KL, Lee JC, Wan CM, Leong JL, Chan LL. Comparison of eye lens dose on neuroimaging protocols between 16- and 64-section multidetector CT: achieving the lowest possible dose. AJNR Am J Neuroradiol. 2009;30(2):373–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Wallace AN, Vyhmeister R, Bagade S, Chatterjee A, Hicks B, Ramirez-Giraldo JC, et al. Evaluation of the use of automatic exposure control and automatic tube potential selection in low-dose cerebrospinal fluid shunt head CT. Neuroradiology. 2015;57(6):639–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Tsapaki V, Aldrich JE, Sharma R, Staniszewska MA, Krisanachinda A, Rehani M, et al. Dose reduction in CT while maintaining diagnostic confidence: diagnostic reference levels at routine head, chest, and abdominal CT--IAEA-coordinated research project. Radiology. 2006;240(3):828–34.PubMedCrossRefGoogle Scholar
  60. 60.
    You J, Dai Y, Huang N, Li JJ, Cheng L, Zhang XL, et al. Low-dose computed tomography with adaptive statistical iterative reconstruction and low tube voltage in craniocervical computed tomographic angiography: impact of body mass index. J Comput Assist Tomogr. 2015;39(5):774–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang WL, Li M, Zhang B, Geng HY, Liang YQ, Xu K, et al. CT angiography of the head-and-neck vessels acquired with low tube voltage, low iodine, and iterative image reconstruction: clinical evaluation of radiation dose and image quality. PLoS One. 2013;8(12):e81486.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Singh S, Kalra MK, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in head CT protocols. J Am Coll Radiol: JACR. 2011;8(8):591–3.PubMedCrossRefGoogle Scholar
  63. 63.
    Pourjabbar S, Singh S, Kulkarni N, Muse V, Digumarthy SR, Khawaja RD, et al. Dose reduction for chest CT: comparison of two iterative reconstruction techniques. Acta Radiol (Stockholm, Sweden: 1987). 2015;56(6):688–95.Google Scholar
  64. 64.
    Khawaja RD, Singh S, Gilman M, Sharma A, Do S, Pourjabbar S, et al. Computed tomography (CT) of the chest at less than 1 mSv: an ongoing prospective clinical trial of chest CT at submillisievert radiation doses with iterative model image reconstruction and iDose4 technique. J Comput Assist Tomogr. 2014;38(4):613–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalra MK, Woisetschlager M, Dahlstrom N, Singh S, Digumarthy S, Do S, et al. Sinogram-affirmed iterative reconstruction of low-dose chest CT: effect on image quality and radiation dose. AJR Am J Roentgenol. 2013;201(2):W235–44.PubMedCrossRefGoogle Scholar
  66. 66.
    Pontana F, Billard AS, Duhamel A, Schmidt B, Faivre JB, Hachulla E, et al. Effect of iterative reconstruction on the detection of systemic sclerosis-related interstitial lung disease: clinical experience in 55 patients. Radiology. 2016;279(1):297–305.PubMedCrossRefGoogle Scholar
  67. 67.
    Barras H, Dunet V, Hachulla AL, Grimm J, Beigelman-Aubry C. Influence of model based iterative reconstruction algorithm on image quality of multiplanar reformations in reduced dose chest CT. Acta Radiol Open. 2016;5(8):2058460116662299.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Macri F, Greffier J, Pereira FR, Mandoul C, Khasanova E, Gualdi G, et al. Ultra-low-dose chest CT with iterative reconstruction does not alter anatomical image quality. Diagn Interv Imaging. 2016;97(11):1131–40.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakajo C, Heinzer S, Montandon S, Dunet V, Bize P, Feldman A, et al. Chest CT at a dose below 0.3 mSv: impact of iterative reconstruction on image quality and lung analysis. Acta Radiol (Stockholm, Sweden: 1987). 2016;57(3):311–7.Google Scholar
  70. 70.
    Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK. Dual-energy CT: Spectrum of thoracic abnormalities. Radiographics: Rev Publi Radiol Soc N Am, Inc. 2016;36(1):38–52.CrossRefGoogle Scholar
  71. 71.
    Schenzle JC, Sommer WH, Neumaier K, Michalski G, Lechel U, Nikolaou K, et al. Dual energy CT of the chest: how about the dose? Investig Radiol. 2010;45(6):347–53.CrossRefGoogle Scholar
  72. 72.
    Giordano J, Khung S, Duhamel A, Hossein-Foucher C, Bellevre D, Lamblin N, et al. Lung perfusion characteristics in pulmonary arterial hypertension (PAH) and peripheral forms of chronic thromboembolic pulmonary hypertension (pCTEPH): dual-energy CT experience in 31 patients. Eur Radiol. 2017;27(4):1631–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Godoy MC, Heller SL, Naidich DP, Assadourian B, Leidecker C, Schmidt B, et al. Dual-energy MDCT: comparison of pulmonary artery enhancement on dedicated CT pulmonary angiography, routine and low contrast volume studies. Eur J Radiol. 2011;79(2):e11–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Sudarski S, Hagelstein C, Weis M, Schoenberg SO, Apfaltrer P. Dual-energy snap-shot perfusion CT in suspect pulmonary nodules and masses and for lung cancer staging. Eur J Radiol. 2015;84(12):2393–400.PubMedCrossRefGoogle Scholar
  75. 75.
    Yoo SY, Kim Y, Cho HH, Choi MJ, Shim SS, Lee JK, Baek SY. Dual-energy CT in the assessment of mediastinal lymph nodes: comparative study of virtual non-contrast and true non-contrast images. Korean J Radiol. 2013;14(3):532–9.  https://doi.org/10.3348/kjr.2013.14.3.532. Epub 2013 May 2. PubMed PMID: 23690725; PubMed Central PMCID: PMC3655312.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wichmann JL, Hardie AD, Schoepf UJ, Felmly LM, Perry JD, Varga-Szemes A, et al. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017;27(2):642–50.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Petritsch B, Kosmala A, Gassenmaier T, Weng AM, Veldhoen S, Kunz AS, et al. Diagnosis of pulmonary artery embolism: comparison of single-source CT and 3rd generation dual-source CT using a dual-energy protocol regarding image quality and radiation dose. RoFo: Fortschr Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin. 2017;189(6):527–36.CrossRefGoogle Scholar
  78. 78.
    Pinho DF, Kulkarni NM, Krishnaraj A, Kalva SP, Sahani DV. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose. Eur Radiol. 2013;23(2):351–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Bauer RW, Kramer S, Renker M, Schell B, Larson MC, Beeres M, et al. Dose and image quality at CT pulmonary angiography-comparison of first and second generation dual-energy CT and 64-slice CT. Eur Radiol. 2011;21(10):2139–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Baxa J, Matouskova T, Krakorova G, Schmidt B, Flohr T, Sedlmair M, et al. Dual-phase dual-energy CT in patients treated with Erlotinib for advanced non-small cell lung cancer: possible benefits of iodine quantification in response assessment. Eur Radiol. 2016;26(8):2828–36.PubMedCrossRefGoogle Scholar
  81. 81.
    Baxa J, Vondrakova A, Matouskova T, Ruzickova O, Schmidt B, Flohr T, et al. Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol. 2014;24(8):1981–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim YN, Lee HY, Lee KS, Seo JB, Chung MJ, Ahn MJ, et al. Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol. 2012;13(6):702–10.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kalra MK, Singh S, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in abdominal CT protocols. J Am Coll Radiol: JACR. 2011;8(10):731–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252(2):433–40.PubMedCrossRefGoogle Scholar
  85. 85.
    De Cecco CN, Darnell A, Macias N, Ayuso JR, Rodriguez S, Rimola J, et al. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Investig Radiol. 2013;48(1):1–9.CrossRefGoogle Scholar
  86. 86.
    Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538–44.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chen CY, Hsu JS, Jaw TS, Shih MC, Lee LJ, Tsai TH, et al. Split-bolus portal venous phase dual-energy CT urography: protocol design, image quality, and dose reduction. AJR Am J Roentgenol. 2015;205(5):W492–501.PubMedCrossRefGoogle Scholar
  89. 89.
    Wilhelm K, Schoenthaler M, Hein S, Adams F, Schlager D, Kuehhas FE, et al. Focused dual-energy CT maintains diagnostic and compositional accuracy for urolithiasis using ultralow-dose noncontrast CT. Urology. 2015;86(6):1097–103.PubMedCrossRefGoogle Scholar
  90. 90.
    Qu M, Yu L, Cardona DG, Liu Y, Duan X, Ai S, et al. Radiation dose reduction in dual-energy CT: does it affect the accuracy of urinary stone characterization? AJR Am J Roentgenol. 2015;205(2):W172–6.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jepperson MA, Cernigliaro JG, el SH I, Morin RL, Haley WE, Thiel DD. In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol/Endourol Soc. 2015;29(2):141–6.CrossRefGoogle Scholar
  92. 92.
    Singh S, Kalra MK, Moore MA, Shailam R, Liu B, Toth TL, et al. Dose reduction and compliance with pediatric CT protocols adapted to patient size, clinical indication, and number of prior studies. Radiology. 2009;252(1):200–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Singh S, Kalra MK, Thrall JH, Mahesh M. Pointers for optimizing radiation dose in pediatric CT protocols. J Am Coll Radiol JACR. 2012;9(1):77–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Donnelly LF, Emery KH, Brody AS, Laor T, Gylys-Morin VM, Anton CG, et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large children’s hospital. AJR Am J Roentgenol. 2001;176(2):303–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Frush DP. Pediatric CT: practical approach to diminish the radiation dose. Pediatr Radiol. 2002;32(10):714–7.. discussion 51-4PubMedCrossRefGoogle Scholar
  96. 96.
    Kalra MK, Quick P, Singh S, Sandborg M, Persson A. Whole spine CT for evaluation of scoliosis in children: feasibility of sub-milliSievert scanning protocol. Acta Radiol (Stockholm, Sweden: 1987). 2013;54(2):226–30.Google Scholar
  97. 97.
    Rompel O, Glockler M, Janka R, Dittrich S, Cesnjevar R, Lell MM, et al. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction. Pediatr Radiol. 2016;46(4):462–72.PubMedCrossRefGoogle Scholar
  98. 98.
    Ryu YJ, Kim WS, Choi YH, Cheon JE, Lee SM, Cho HH, et al. Pediatric chest CT: wide-volume and helical scan modes in 320-MDCT. AJR Am J Roentgenol. 2015;205(6):1315–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Sorantin E, Riccabona M, Stucklschweiger G, Guss H, Fotter R. Experience with volumetric (320 rows) pediatric CT. Eur J Radiol. 2013;82(7):1091–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Kanal KM, Butler PF, Sengupta D, Bhargavan-Chatfield M, Coombs LP, Morin RL. U.S. diagnostic reference levels and achievable doses for 10 adult CT examinations. Radiology. 2017;284:120.. 161911PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Verdun FR, Gutierrez D, Vader JP, Aroua A, Alamo-Maestre LT, Bochud F, et al. CT radiation dose in children: a survey to establish age-based diagnostic reference levels in Switzerland. Eur Radiol. 2008;18(9):1980–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Smans K, Vano E, Sanchez R, Schultz FW, Zoetelief J, Kiljunen T, et al. Results of a European survey on patient doses in paediatric radiology. Radiat Prot Dosim. 2008;129(1–3):204–10.CrossRefGoogle Scholar
  103. 103.
    McCollough C, Branham T, Herlihy V, Bhargavan M, Robbins L, Bush K, et al. Diagnostic reference levels from the ACR CT accreditation program. J Ame Coll Radiol JACR. 2011;8(11):795–803.CrossRefGoogle Scholar
  104. 104.
    Klosterkemper Y, Appel E, Thomas C, Bethge OT, Aissa J, Kropil P, et al. Tailoring CT dose to patient size: implementation of the updated 2017 ACR size-specific diagnostic reference levels. Acad Radiol. 2018;25:1624.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kim M, Chang K, Hwang J, Nam Y, Han D, Yoon J. Radiation dose for pediatric and young adult Ct: a survey to establish age-based reference levels of 2015-2016 in Korea. Radiat Prot Dosim. 2017;175(2):228–37.CrossRefGoogle Scholar
  106. 106.
    European Guidelines on DRLs for Paediatric Imaging 2017. Available from: http://www.eurosafeimaging.org/wp/wp-content/uploads/2014/02/European-Guidelines-on-DRLs-for-Paediatric-Imaging_Revised_18-July-2016_clean.pdf. Accessed on 1st June 2018.
  107. 107.
    Murugan VA, Chatfield MB, Rehani M, Kalra MK. ACR DIR: a User's guide for cardiothoracic radiologists: part 2: how to interpret your DIR report. J Thorac Imaging. 2015;30(6):W69–72.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Murugan VA, Bhargavan-Chatfield M, Rehani M, Kalra MK. American college of radiology dose index registry: a user’s guide for cardiothoracic radiologists part 1: dose index registry (DIR)-what it means and does for CT? J Thorac Imaging. 2015;30(6):W66–8.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Cook TS, Zimmerman SL, Steingall SR, Maidment AD, Kim W, Boonn WW. RADIANCE: an automated, enterprise-wide solution for archiving and reporting CT radiation dose estimates. Radiographics Rev Publ Radiol Soc N Am Inc. 2011;31(7):1833–46.Google Scholar
  110. 110.
    Christianson O, Li X, Frush D, Samei E. Automated size-specific CT dose monitoring program: assessing variability in CT dose. Med Phys. 2012;39(11):7131–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mannudeep K. Kalra
    • 1
    • 2
    Email author
  • Fatemeh Homayounieh
    • 1
    • 2
  • Ramandeep Singh
    • 1
    • 2
  1. 1.MGH Webster Center for Quality and Safety, Department of Imaging, Massachusetts General HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA

Personalised recommendations