Advertisement

Trapdoor Hash Functions and Their Applications

  • Nico Döttling
  • Sanjam Garg
  • Yuval Ishai
  • Giulio MalavoltaEmail author
  • Tamer MourEmail author
  • Rafail Ostrovsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11694)

Abstract

We introduce a new primitive, called trapdoor hash functions (TDH), which are hash functions \(\mathsf {H}: \{0,1\}^n \rightarrow \{0,1\}^\lambda \) with additional trapdoor function-like properties. Specifically, given an index \(i\in [n]\), TDHs allow for sampling an encoding key \(\mathsf {ek}\) (that hides i) along with a corresponding trapdoor. Furthermore, given \(\mathsf {H}(x)\), a hint value \(\mathsf {E}(\mathsf {ek},x)\), and the trapdoor corresponding to \(\mathsf {ek}\), the \(i^{th}\) bit of x can be efficiently recovered. In this setting, one of our main questions is: How small can the hint value \(\mathsf {E}(\mathsf {ek},x)\) be? We obtain constructions where the hint is only one bit long based on DDH, QR, DCR, or LWE.

This primitive opens a floodgate of applications for low-communication secure computation. We mainly focus on two-message protocols between a receiver and a sender, with private inputs x and y, resp., where the receiver should learn f(xy). We wish to optimize the (download) rate of such protocols, namely the asymptotic ratio between the size of the output and the sender’s message. Using TDHs, we obtain:
  1. 1.
    The first protocols for (two-message) rate-1 string OT based on DDH, QR, or LWE. This has several useful consequences, such as:
    1. (a)

      The first constructions of PIR with communication cost poly-logarithmic in the database size based on DDH or QR. These protocols are in fact rate-1 when considering block PIR.

       
    2. (b)

      The first constructions of a semi-compact homomorphic encryption scheme for branching programs, where the encrypted output grows only with the program length, based on DDH or QR.

       
    3. (c)

      The first constructions of lossy trapdoor functions with input to output ratio approaching 1 based on DDH, QR or LWE.

       
    4. (d)

      The first constant-rate LWE-based construction of a 2-message “statistically sender-private” OT protocol in the plain model.

       
     
  2. 2.

    The first rate-1 protocols (under any assumption) for n parallel OTs and matrix-vector products from DDH, QR or LWE.

     

We further consider the setting where f evaluates a RAM program y with running time \(T\ll |x|\) on x. We obtain the first protocols with communication sublinear in the size of x, namely \(T\cdot \sqrt{|x|}\) or \(T\cdot \root 3 \of {|x|}\), based on DDH or, resp., pairings (and correlated-input secure hash functions).

Notes

Acknowledgments

We thank Craig Gentry, Shai Halevi, Srinath Setty, and Vinod Vaikuntanathan for helpful discussions and pointers.

S. Garg supported by DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, AFOSR YIP Award, DARPA and SPAWAR under contract N66001-15-C-4065, a Hellman Award and research grants by the Okawa Foundation, Visa Inc., and Center for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the author and do not reflect the official policy or position of the funding agencies.

Y. Ishai supported by ERC Project NTSC (742754), ISF grant 1709/14, NSF-BSF grant 2015782, and a grant from the Ministry of Science and Technology, Israel and Department of Science and Technology, Government of India.

G. Malavolta supported by a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, a Cylab seed funding award, and a JP Morgan Faculty Fellowship.

T. Mour supported by BSF grant 2012378, and NSF-BSF grant 2015782.

R. Ostrovsky supported by NSF grant 1619348, BSF grant 2015782, DARPA SafeWare subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-C-4065, JP Morgan Faculty Research Award, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. The views expressed are those of the authors and do not reflect position of the Department of Defense or the U.S. Government.

References

  1. 1.
    Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_8CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_8CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Constrained PRFs for \(\rm NC^1\) in traditional groups. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 543–574. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_19CrossRefzbMATHGoogle Scholar
  4. 4.
    Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-message witness indistinguishability and secure computation in the plain model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_10CrossRefzbMATHGoogle Scholar
  5. 5.
    Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_42CrossRefGoogle Scholar
  6. 6.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_8CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 666–684. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_36CrossRefGoogle Scholar
  8. 8.
    Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant communication overhead using multiplication embeddings. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 375–398. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-05378-9_20CrossRefGoogle Scholar
  9. 9.
    Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_19CrossRefGoogle Scholar
  10. 10.
    Boyle, E., Gilboa, N., Ishai, Y.: Group-based secure computation: optimizing rounds, communication, and computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 163–193. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_6CrossRefGoogle Scholar
  11. 11.
    Brakerski, Z., Döttling, N.: Two-message statistically sender-private OT from LWE. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part II. LNCS, vol. 11240, pp. 370–390. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03810-6_14CrossRefGoogle Scholar
  12. 12.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_1CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leakage resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I. LNCS, vol. 10820, pp. 535–564. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_20CrossRefGoogle Scholar
  14. 14.
    Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_28CrossRefGoogle Scholar
  15. 15.
    Chang, Y.-C.: Single database private information retrieval with logarithmic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_5CrossRefGoogle Scholar
  16. 16.
    Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63715-0_2CrossRefGoogle Scholar
  17. 17.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, 23–25 October 1995, pp. 41–50. IEEE Computer Society Press (1995)Google Scholar
  18. 18.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_9CrossRefzbMATHGoogle Scholar
  19. 19.
    Dinur, I., Keller, N., Klein, O.: An optimal distributed discrete log protocol with applications to homomorphic secret sharing. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 213–242. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_8CrossRefGoogle Scholar
  20. 20.
    Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_4CrossRefGoogle Scholar
  21. 21.
    Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 537–569. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_18CrossRefGoogle Scholar
  22. 22.
    Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-based and key-dependent message secure encryption schemes. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-76578-5_1CrossRefzbMATHGoogle Scholar
  23. 23.
    Fazio, N., Gennaro, R., Jafarikhah, T., Skeith, W.E.: Homomorphic secret sharing from Paillier encryption. In: Okamoto, T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 381–399. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68637-0_23CrossRefGoogle Scholar
  24. 24.
    Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions and applications. Cryptology ePrint Archive, Report 2018/872 (2018). https://eprint.iacr.org/2018/872
  25. 25.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 26–29 October 2013, pp. 40–49. IEEE Computer Society Press (2013)Google Scholar
  26. 26.
    Garg, S., Hajiabadi, M.: Trapdoor functions from the computational Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96881-0_13CrossRefGoogle Scholar
  27. 27.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178. ACM Press (2009)Google Scholar
  28. 28.
    Gentry, C., Groth, J., Ishai, Y., Peikert, C., Sahai, A., Smith, A.D.: Using fully homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. J. Cryptol. 28(4), 820–843 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. Technical report (2019). (Personal communication)Google Scholar
  30. 30.
    Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_16CrossRefGoogle Scholar
  31. 31.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, New York City, NY, USA, pp. 218–229, 25–27 May 1987. ACM Press (1987)Google Scholar
  32. 32.
    Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_12CrossRefGoogle Scholar
  33. 33.
    Groth, J., Kiayias, A., Lipmaa, H.: Multi-query computationally-private information retrieval with constant communication rate. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 107–123. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_7CrossRefGoogle Scholar
  34. 34.
    Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message oblivious transfer. J. Cryptol. 25(1), 158–193 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 627–643. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_37CrossRefGoogle Scholar
  36. 36.
    Hubacek, P., Wichs, D.: On the communication complexity of secure function evaluation with long output. Cryptology ePrint Archive, Report 2014/669 (2014). http://eprint.iacr.org/2014/669
  37. 37.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  38. 38.
    Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_34CrossRefzbMATHGoogle Scholar
  39. 39.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant computational overhead. In: STOC 2008, pp. 433–442 (2008)Google Scholar
  40. 40.
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_31CrossRefGoogle Scholar
  41. 41.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_18CrossRefGoogle Scholar
  42. 42.
    Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: USENIX Security Symposium, pp. 1651–1669 (2018)Google Scholar
  43. 43.
    Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th Annual ACM Symposium on Theory of Computing, Portland, OR, USA, 14–17 June 2015, pp. 419–428. ACM Press (2015)Google Scholar
  44. 44.
    Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: 38th Annual Symposium on Foundations of Computer Science, Miami Beach, Florida, 19–22 October 1997, pp. 364–373. IEEE Computer Society Press (1997)Google Scholar
  45. 45.
    Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005).  https://doi.org/10.1007/11556992_23CrossRefGoogle Scholar
  46. 46.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33rd Annual ACM Symposium on Theory of Computing, Crete, Greece, 6–8 July 2001, pp. 590–599. ACM Press (2001)Google Scholar
  47. 47.
    Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: 31st Annual ACM Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999, pp. 245–254. ACM Press (1999)Google Scholar
  48. 48.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp. 448–457 (2001)Google Scholar
  49. 49.
    Okamoto, T., Pietrzak, K., Waters, B., Wichs, D.: New realizations of somewhere statistically binding hashing and positional accumulators. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 121–145. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_6CrossRefGoogle Scholar
  50. 50.
    Ostrovsky, R., Skeith, W.E.: A survey of single-database private information retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_26CrossRefGoogle Scholar
  51. 51.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Ladner, R.E., Dwork, C. (eds.) 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 187–196. ACM Press (2008)Google Scholar
  52. 52.
    Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 859–870 (2018)Google Scholar
  53. 53.
    Stern, J.P.: A new and efficient all-or-nothing disclosure of secrets protocol. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-49649-1_28CrossRefGoogle Scholar
  54. 54.
    Winkler, S., Wullschleger, J.: On the efficiency of classical and quantum oblivious transfer reductions. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 707–723. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_38CrossRefGoogle Scholar
  55. 55.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada, 27–29 October 1986, pp. 162–167. IEEE Computer Society Press (1986)Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.CISPA Helmholtz Center for Information SecuritySaarbrückenGermany
  2. 2.UC BerkeleyBerkeleyUSA
  3. 3.TechnionHaifaIsrael
  4. 4.Carengie Mellon UniversityPittsburghUSA
  5. 5.Weizmann Institute of ScienceRehovotIsrael
  6. 6.UCLALos AngelesUSA

Personalised recommendations