Advertisement

Efficient Collision Attack Frameworks for RIPEMD-160

  • Fukang Liu
  • Christoph Dobraunig
  • Florian Mendel
  • Takanori Isobe
  • Gaoli WangEmail author
  • Zhenfu CaoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11693)

Abstract

RIPEMD-160 is an ISO/IEC standard and has been applied to generate the Bitcoin address with SHA-256. Due to the complex dual-stream structure, the first collision attack on reduced RIPEMD-160 presented by Liu, Mendel and Wang at Asiacrypt 2017 only reaches 30 steps, having a time complexity of \(2^{70}\). Apart from that, several semi-free-start collision attacks have been published for reduced RIPEMD-160 with the start-from-the-middle method. Inspired from such start-from-the middle structures, we propose two novel efficient collision attack frameworks for reduced RIPEMD-160 by making full use of the weakness of its message expansion. Those two frameworks are called dense-left-and-sparse-right (DLSR) framework and sparse-left-and-dense-right (SLDR) framework. As it turns out, the DLSR framework is more efficient than SLDR framework since one more step can be fully controlled, though with extra \(2^{32}\) memory complexity. To construct the best differential characteristics for the DLSR framework, we carefully build the linearized part of the characteristics and then solve the corresponding nonlinear part using a guess-and-determine approach. Based on the newly discovered differential characteristics, we provide colliding messages pairs for the first practical collision attacks on 30 and 31 (out of 80) steps of RIPEMD-160 with time complexity \(2^{35.9}\) and \(2^{41.5}\) respectively. In addition, benefiting from the partial calculation, we can attack 33 and 34 (out of 80) steps of RIPEMD-160 with time complexity \(2^{67.1}\) and \(2^{74.3}\) respectively. When applying the SLDR framework to the differential characteristic used in the Asiacrypt 2017 paper, we significantly improve the time complexity by a factor of \(2^{13}\). However, it still cannot compete with the results obtained from the DLSR framework. To the best of our knowledge, these are the best collision attacks on reduced RIPEMD-160 with respect to the number of steps, including the first colliding message pairs for 30 and 31 steps of RIPEMD-160.

Keywords

Hash function RIPEMD-160 Start-from-the-middle Collision attack Collision 

Notes

Acknowledgements

We thank the anonymous reviewers of CRYPTO 2019 for their insightful comments and suggestions. Fukang Liu and Zhenfu Cao are supported by National Natural Science Foundation of China (Grant No. 61632012, 61672239). In addition, Fukang Liu is also supported by Invitation Programs for Foreigner-based Researchers of the National Institute of Information and Communications Technology (NICT). Takanori Isobe is supported by Grant-in-Aid for Scientific Research (B) (KAKENHI 19H02141) for Japan Society for the Promotion of Science. Gaoli Wang is supported by the National Natural Science Foundation of China (No. 61572125) and National Cryptography Development Fund (No. MMJJ20180201).

Supplementary material

References

  1. 1.
    Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_18CrossRefGoogle Scholar
  2. 2.
    Bosselaers, A., Preneel, B. (eds.): Integrity Primitives for Secure Information Systems. LNCS, vol. 1007. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60640-8CrossRefGoogle Scholar
  3. 3.
    Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_39CrossRefGoogle Scholar
  4. 4.
    Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis, Ruhr University Bochum (2005)Google Scholar
  5. 5.
    De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: general results and applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935230_1CrossRefGoogle Scholar
  6. 6.
    den Boer, B., Bosselaers, A.: Collisions for the compression function of MD5. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_26CrossRefGoogle Scholar
  7. 7.
    Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60865-6_43CrossRefGoogle Scholar
  8. 8.
    Dobbertin, H.: RIPEMD with two-round compress function is not collision-free. J. Cryptol. 10(1), 51–70 (1997)CrossRefGoogle Scholar
  9. 9.
    Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: a strengthened version of RIPEMD. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 71–82. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60865-6_44CrossRefGoogle Scholar
  10. 10.
    Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 612–630. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_25CrossRefGoogle Scholar
  11. 11.
    Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential collision search with applications to SHA-512. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 473–488. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46706-0_24CrossRefGoogle Scholar
  12. 12.
    Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_14CrossRefGoogle Scholar
  13. 13.
    Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on 76-step SHA-1. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 623–642. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_30CrossRefGoogle Scholar
  14. 14.
    Landelle, F., Peyrin, T.: Cryptanalysis of full RIPEMD-128. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 228–244. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_14CrossRefGoogle Scholar
  15. 15.
    Leurent, G.: Message freedom in MD4 and MD5 collisions: application to APOP. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 309–328. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74619-5_20CrossRefGoogle Scholar
  16. 16.
    Liu, F., Mendel, F., Wang, G.: Collisions and semi-free-start collisions for round-reduced RIPEMD-160. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 158–186. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_6CrossRefGoogle Scholar
  17. 17.
    Mendel, F., Nad, T., Scherz, S., Schläffer, M.: Differential attacks on reduced RIPEMD-160. In: Gollmann, D., Freiling, F.C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 23–38. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33383-5_2CrossRefGoogle Scholar
  18. 18.
    Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: searching through a minefield of contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_16CrossRefGoogle Scholar
  19. 19.
    Mendel, F., Nad, T., Schläffer, M.: Collision attacks on the reduced dual-stream hash function RIPEMD-128. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 226–243. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34047-5_14CrossRefGoogle Scholar
  20. 20.
    Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_16CrossRefGoogle Scholar
  21. 21.
    Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of reduced RIPEMD-160. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 484–503. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_25CrossRefGoogle Scholar
  22. 22.
    Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_40CrossRefGoogle Scholar
  23. 23.
    Ohtahara, C., Sasaki, Y., Shimoyama, T.: Preimage attacks on the step-reduced RIPEMD-128 and RIPEMD-160. IEICE Trans. 95-A(10), 1729–1739 (2012)CrossRefGoogle Scholar
  24. 24.
    Stevens, M.: Fast collision attack on MD5. Cryptology ePrint Archive, Report 2006/104 (2006). https://eprint.iacr.org/2006/104
  25. 25.
    Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 570–596. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_19CrossRefGoogle Scholar
  26. 26.
    Wang, G.: Practical collision attack on 40-Step RIPEMD-128. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 444–460. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04852-9_23CrossRefGoogle Scholar
  27. 27.
    Wang, G., Shen, Y., Liu, F.: Cryptanalysis of 48-step RIPEMD-160. IACR Trans. Symmetric Cryptol. 2017(2), 177–202 (2017)Google Scholar
  28. 28.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions MD4 and RIPEMD. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_1CrossRefGoogle Scholar
  29. 29.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_2CrossRefGoogle Scholar
  30. 30.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_2CrossRefGoogle Scholar
  31. 31.
    Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_1CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Trustworthy ComputingEast China Normal UniversityShanghaiChina
  2. 2.Graz University of TechnologyGrazAustria
  3. 3.Radboud UniversityNijmegenThe Netherlands
  4. 4.Infineon Technologies AGLudwigsburgGermany
  5. 5.National Institute of Information and Communications TechnologyTokyoJapan
  6. 6.University of HyogoKobeJapan

Personalised recommendations