Advertisement

Non-malleable Secret Sharing in the Computational Setting: Adaptive Tampering, Noisy-Leakage Resilience, and Improved Rate

  • Antonio FaonioEmail author
  • Daniele VenturiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11693)

Abstract

We revisit the concept of non-malleable secret sharing (Goyal and Kumar, STOC 2018) in the computational setting. In particular, under the assumption of one-to-one one-way functions, we exhibit a computationally private, threshold secret sharing scheme satisfying all of the following properties.

  • Continuous non-malleability: No computationally-bounded adversary tampering independently with all the shares can produce mauled shares that reconstruct to a value related to the original secret. This holds even in case the adversary can tamper continuously, for an unbounded polynomial number of times, with the same target secret sharing, where the next sequence of tampering functions, as well as the subset of shares used for reconstruction, can be chosen adaptively based on the outcome of previous reconstructions.

  • Resilience to noisy leakage: Non-malleability holds even if the adversary can additionally leak information independently from all the shares. There is no bound on the length of leaked information, as long as the overall leakage does not decrease the min-entropy of each share by too much.

  • Improved rate: The information rate of our final scheme, defined as the ratio between the size of the message and the maximal size of a share, asymptotically approaches 1 when the message length goes to infinity.

Previous constructions achieved information-theoretic security, sometimes even for arbitrary access structures, at the price of at least one of the following limitations: (i) Non-malleability only holds against one-time tampering attacks; (ii) Non-malleability holds against a bounded number of tampering attacks, but both the choice of the tampering functions and of the sets used for reconstruction is non-adaptive; (iii) Information rate asymptotically approaching zero; (iv) No security guarantee in the presence of leakage.

Keywords

Secret sharing Non-malleability Leakage resilience Computational security 

References

  1. 1.
    Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 393–417. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_15CrossRefGoogle Scholar
  2. 2.
    Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret-sharing schemes for general access structures. Cryptology ePrint Archive, Report 2018/1147 (2018). https://ia.cr/2018/1147
  3. 3.
    Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: STOC, pp. 459–468 (2015)Google Scholar
  4. 4.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: STOC, pp. 774–783 (2014)Google Scholar
  5. 5.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. SIAM J. Comput. 47(2), 524–546 (2018) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aggarwal, D., Döttling, N., Nielsen, J.B., Obremski, M., Purwanto, E.: Continuous non-malleable codes in the 8-split-state model. Cryptology ePrint Archive, Report 2017/357 (2017). https://ia.cr/2017/357
  7. 7.
    Aggarwal, D., Dziembowski, S., Kazana, T., Obremski, M.: Leakage-resilient non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 398–426. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_17CrossRefGoogle Scholar
  8. 8.
    Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: A rate-optimizing compiler for non-malleable codes against bit-wise tampering and permutations. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 375–397. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_16CrossRefGoogle Scholar
  9. 9.
    Ananth, P., Ishai, Y., Sahai, A.: Private circuits: a modular approach. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 427–455. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_15CrossRefGoogle Scholar
  10. 10.
    Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. Cryptology ePrint Archive, Report 2018/1144 (2018). https://ia.cr/2018/1144
  11. 11.
    Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20901-7_2CrossRefGoogle Scholar
  12. 12.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
  13. 13.
    Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret sharing with maximal corruptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_3CrossRefGoogle Scholar
  14. 14.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979 National Computer Conference, vol. 48, pp. 313–317 (1979)Google Scholar
  15. 15.
    Blundo, C., Santis, A.D., Gargano, L., Vaccaro, U.: On the information rate of secret sharing schemes. Theoret. Comput. Sci. 154(2), 283–306 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carpentieri, M., De Santis, A., Vaccaro, U.: Size of shares and probability of cheating in threshold schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_10CrossRefzbMATHGoogle Scholar
  17. 17.
    Chandran, N., Kanukurthi, B., Raghuraman, S.: Information-theoretic local non-malleable codes and their applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 367–392. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49099-0_14CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. In: STOC, pp. 285–298 (2016)Google Scholar
  19. 19.
    Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: FOCS, pp. 306–315 (2014)Google Scholar
  20. 20.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)Google Scholar
  21. 21.
    Cheraghchi, M., Guruswami, V.: Capacity of non-malleable codes. In: Innovations in Theoretical Computer Science, pp. 155–168 (2014)Google Scholar
  22. 22.
    Cheraghchi, M., Guruswami, V.: Non-malleable coding against bit-wise and split-state tampering. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 440–464. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_19CrossRefzbMATHGoogle Scholar
  23. 23.
    Chor, B., Goldreich, O.: Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput. 17(2), 230–261 (1988)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Coretti, S., Dodis, Y., Tackmann, B., Venturi, D.: Non-malleable encryption: simpler, shorter, stronger. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 306–335. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_13CrossRefGoogle Scholar
  25. 25.
    Coretti, S., Faonio, A., Venturi, D.: Rate-optimizing compilers for continuously non-malleable codes. Cryptology ePrint Archive, Report 2019/055 (2019). https://ia.cr/2019/055
  26. 26.
    Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46494-6_22CrossRefGoogle Scholar
  27. 27.
    Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15317-4_9CrossRefGoogle Scholar
  28. 28.
    Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_37CrossRefGoogle Scholar
  29. 29.
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS, pp. 511–520 (2010)Google Scholar
  30. 30.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 239–257. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_14CrossRefGoogle Scholar
  33. 33.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in Computer Science, pp. 434–452 (2010)Google Scholar
  34. 34.
    Faonio, A., Nielsen, J.B., Simkin, M., Venturi, D.: Continuously non-malleable codes with split-state refresh. In: ACNS, pp. 1–19 (2018)CrossRefGoogle Scholar
  35. 35.
    Faonio, A., Nielsen, J.B., Venturi, D.: Fully leakage-resilient signatures revisited: graceful degradation, noisy leakage, and construction in the bounded-retrieval model. Theoret. Comput. Sci. 660, 23–56 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Faonio, A., Venturi, D.: Non-malleable secret sharing in the computational setting: adaptive tampering, noisy-leakage resilience, and improved rate. Cryptology ePrint Archive, Report 2019/105 (2019). https://ia.cr/2019/105
  37. 37.
    Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54242-8_20CrossRefGoogle Scholar
  38. 38.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_7CrossRefGoogle Scholar
  39. 39.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic Tamper-proof (ATP) security: theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_15CrossRefGoogle Scholar
  40. 40.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
  41. 41.
    Goyal, V., Jain, A., Khurana, D.: Witness signatures and non-malleable multi-prover zero-knowledge proofs. Cryptology ePrint Archive, Report 2015/1095 (2015). http://ia.cr/2015/1095
  42. 42.
    Goyal, V., Kumar, A.: Non-malleable secret sharing. In: STOC, pp. 685–698 (2018)Google Scholar
  43. 43.
    Goyal, V., Kumar, A.: Non-malleable secret sharing for general access structures. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 501–530. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_17CrossRefGoogle Scholar
  44. 44.
    Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: STOC, pp. 1128–1141 (2016)Google Scholar
  45. 45.
    HashiCorp: The Vault project. https://www.vaultproject.io/. Accessed 22 Dec 2018
  46. 46.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_27CrossRefGoogle Scholar
  47. 47.
    Kanukurthi, B., Obbattu, S.L.B., Sekar, S.: Four-state non-malleable codes with explicit constant rate. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 344–375. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70503-3_11CrossRefGoogle Scholar
  48. 48.
    Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_12CrossRefGoogle Scholar
  49. 49.
    Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing. Cryptology ePrint Archive, Report 2018/1138 (2018). https://ia.cr/2018/1138
  50. 50.
    Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: STOC, pp. 1144–1156 (2017)Google Scholar
  51. 51.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–532. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_30CrossRefGoogle Scholar
  52. 52.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. SIAM J. Comput. 41(4), 772–814 (2012)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Ostrovsky, R., Persiano, G., Venturi, D., Visconti, I.: Continuously non-malleable codes in the split-state model from minimal assumptions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 608–639. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_21CrossRefGoogle Scholar
  54. 54.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85 (1989)Google Scholar
  55. 55.
    Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: CCS, pp. 172–184 (2007)Google Scholar
  56. 56.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004). http://ia.cr/2004/332
  58. 58.
    Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. Cryptology ePrint Archive, Report 2018/1154 (2018). https://ia.cr/2018/1154

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.Department of Computer ScienceSapienza University of RomeRomeItaly

Personalised recommendations