Advertisement

Fully Secure Attribute-Based Encryption for t-CNF from LWE

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11692)

Abstract

Attribute-based Encryption (ABE), first introduced by [SW05, GPSW06], is a public key encryption system that can support multiple users with varying decryption permissions. One of the main properties of such schemes is the supported function class of policies. While there are fully secure constructions from bilinear maps for a fairly large class of policies, the situation with lattice-based constructions is less satisfactory and many efforts were made to close this gap. Prior to this work the only known fully secure lattice construction was for the class of point functions (also known as IBE).

In this work we construct for the first time a lattice-based (ciphertext-policy) ABE scheme for the function class t-CNF, which consists of CNF formulas where each clause depends on at most t bits of the input, for any constant t. This class includes NP-verification policies, bit-fixing policies and t-threshold policies. Towards this goal we also construct a fully secure single-key constrained PRF from OWF for the same function class, which might be of independent interest.

Notes

Acknowledgements

We thank Sina Shiehian for pointing out that the construction in Sect. 4 can be initialized with a polynomial modulus q whenever the depth of the conforming cPRF is logarithmic, which in turn implies that a low-depth PRF from LWE with a polynomial modulus suffices to derive an ABE construction for t-CNF with similar parameters.

References

  1. [ABB10a]
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  2. [ABB10b]
    Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_6CrossRefzbMATHGoogle Scholar
  3. [ABV+12]
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_17CrossRefGoogle Scholar
  4. [ACPS09]
    Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_35CrossRefGoogle Scholar
  5. [AFV11]
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_2CrossRefGoogle Scholar
  6. [Ajt96]
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: STOC, pp. 99–108 (1996)Google Scholar
  7. [Ajt99]
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48523-6_1CrossRefGoogle Scholar
  8. [AP14]
    Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_17CrossRefGoogle Scholar
  9. [BB04a]
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_14CrossRefGoogle Scholar
  10. [BB04b]
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_27CrossRefGoogle Scholar
  11. [BF03]
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003). Preliminary version in CRYPTO ’01MathSciNetCrossRefGoogle Scholar
  12. [BGG+14]
    Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_30CrossRefGoogle Scholar
  13. [BGI14]
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_29CrossRefGoogle Scholar
  14. [BL16]
    Boyen, X., Li, Q.: Towards tightly secure lattice short signature and ID-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_14CrossRefGoogle Scholar
  15. [BLP+13]
    Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: Boneh, D., et al. (ed.) [BRF13], pp. 575–584Google Scholar
  16. [Boy13]
    Boyen, X.: Attribute-based functional encryption on lattices. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 122–142. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_8CrossRefGoogle Scholar
  17. [BRF13]
    Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.): Symposium on Theory of Computing Conference, STOC 2013, Palo Alto, CA, USA, 1–4 June 2013. ACM (2013)Google Scholar
  18. [BV16]
    Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_13CrossRefGoogle Scholar
  19. [BW13]
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_15CrossRefGoogle Scholar
  20. [CGKW18]
    Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear entropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 503–534. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78381-9_19CrossRefGoogle Scholar
  21. [CHK03]
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_16CrossRefGoogle Scholar
  22. [CHKP12]
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefGoogle Scholar
  23. [Coc01]
    Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_32CrossRefGoogle Scholar
  24. [DKNY18]
    Davidson, A., Katsumata, S., Nishimaki, R., Yamada, S.: Constrained PRFs for bit-fixing from OWFs with constant collusion resistance. IACR Cryptology ePrint Archive 2018:982 (2018)Google Scholar
  25. [Gen06]
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_27CrossRefGoogle Scholar
  26. [GGM86]
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986). Extended abstract in FOCS 84MathSciNetCrossRefGoogle Scholar
  27. [GKW16]
    Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_14CrossRefGoogle Scholar
  28. [GPSW06]
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 30 October–3 November 2006, pp. 89–98. ACM (2006)Google Scholar
  29. [GPV08]
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, 17–20 May 2008, pp. 197–206. ACM (2008)Google Scholar
  30. [GSW13]
    Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_5CrossRefGoogle Scholar
  31. [GVW13]
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., et al. (eds.) [BRF13], pp. 545–554Google Scholar
  32. [GVW15]
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, 14–17 June 2015, pp. 469–477. ACM (2015)Google Scholar
  33. [KL15]
    Kowalczyk, L., Lewko, A.B.: Bilinear entropy expansion from the decisional linear assumption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 524–541. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_26CrossRefGoogle Scholar
  34. [KPTZ13]
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M., (eds.) 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, Berlin, Germany, 4–8 November 2013, pp. 669–684. ACM (2013)Google Scholar
  35. [KW19]
    Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k-Lin. IACR Cryptology ePrint Archive 2019:224 (2019)Google Scholar
  36. [LOS+10]
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_4CrossRefGoogle Scholar
  37. [LW12]
    Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32009-5_12CrossRefGoogle Scholar
  38. [MM11]
    Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_26CrossRefGoogle Scholar
  39. [MP12]
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  40. [OSW07]
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexandria, Virginia, USA, October 28–31, pp. 195–203 (2007)Google Scholar
  41. [Pei09]
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, 31 May–2 June 2009, pp. 333–342 (2009)Google Scholar
  42. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)Google Scholar
  43. [Sch87]
    Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 53, 201–224 (1987)MathSciNetCrossRefGoogle Scholar
  44. [SW05]
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  45. [Wat05]
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_7CrossRefGoogle Scholar
  46. [Wat09]
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_36CrossRefGoogle Scholar
  47. [Wat11]
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations