Advertisement

Homomorphic Time-Lock Puzzles and Applications

  • Giulio MalavoltaEmail author
  • Sri Aravinda Krishnan ThyagarajanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11692)

Abstract

Time-lock puzzles allow one to encrypt messages for the future, by efficiently generating a puzzle with a solution s that remains hidden until time \(\mathcal {T}\) has elapsed. The solution is required to be concealed from the eyes of any algorithm running in (parallel) time less than \(\mathcal {T}\). We put forth the concept of homomorphic time-lock puzzles, where one can evaluate functions over puzzles without solving them, i.e., one can manipulate a set of puzzles with solutions \((s_1, \dots , s_n)\) to obtain a puzzle that solves to \(f(s_1, \ldots , s_n)\), for any function f. We propose candidate constructions under concrete cryptographic assumptions for different classes of functions. Then we show how homomorphic time-lock puzzles overcome the limitations of classical time-lock puzzles by proposing new protocols for applications of interest, such as e-voting, multi-party coin flipping, and fair contract signing.

Notes

Acknowledgements

Research supported in part by a gift from Ripple, a gift from DoS Networks, a grant from Northrop Grumman, a Cylab seed funding award, and a JP Morgan Faculty Fellowship.

References

  1. 1.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM STOC, pp. 439–448. ACM Press, June 2015Google Scholar
  2. 2.
    Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: Sudan, M. (ed.) ITCS 2016, pp. 345–356. ACM, Cambridge (2016)Google Scholar
  3. 3.
    Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: 23rd FOCS, pp. 112–117. IEEE Computer Society Press, November 1982Google Scholar
  4. 4.
    Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96884-1_25CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.org/2018/712
  6. 6.
    Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_15CrossRefGoogle Scholar
  7. 7.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_1CrossRefGoogle Scholar
  8. 8.
    Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptol. 1(2), 107–118 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_19CrossRefzbMATHGoogle Scholar
  10. 10.
    Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 308–338. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53018-4_12CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44586-2_9CrossRefGoogle Scholar
  12. 12.
    Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293. IEEE Computer Society Press, November 2000Google Scholar
  13. 13.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs based on a single random string (extended abstract). In: 31st FOCS, pp. 308–317. IEEE Computer Society Press, October 1990Google Scholar
  14. 14.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press, October 2013Google Scholar
  15. 15.
    Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, June 2013Google Scholar
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009Google Scholar
  17. 17.
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop homomorphic encryption and rerandomizable yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_9CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press, October 1984Google Scholar
  19. 19.
    Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM Press, May 1982Google Scholar
  20. 20.
    Hohenberger, S., Waters, B.: Synchronized aggregate signatures from the RSA assumption. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 197–229. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_7CrossRefGoogle Scholar
  21. 21.
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_31CrossRefGoogle Scholar
  22. 22.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_12CrossRefGoogle Scholar
  23. 23.
    Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. In: 58th FOCS, pp. 576–587. IEEE Computer Society Press (2017)Google Scholar
  24. 24.
    Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Des. Codes Crypt. 86, 2549–2586 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mahmoody, M., Moran, T., Vadhan, S.: Time-lock puzzles in the random Oracle model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 39–50. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_3CrossRefzbMATHGoogle Scholar
  26. 26.
    Mahmoody, M., Moran, T., Vadhan, S.P.: Publicly verifiable proofs of sequential work. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 373–388. ACM, January 2013Google Scholar
  27. 27.
    Ostrovsky, R., Paskin-Cherniavsky, A., Paskin-Cherniavsky, B.: Maliciously circuit-private FHE. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 536–553. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_30CrossRefGoogle Scholar
  28. 28.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16CrossRefGoogle Scholar
  29. 29.
    Pietrzak, K.: Simple verifiable delay functions. Cryptology ePrint Archive, Report 2018/627 (2018). https://eprint.iacr.org/2018/627
  30. 30.
    Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Technical report, Cambridge, MA, USA (1996)Google Scholar
  31. 31.
    Wesolowski, B.: Efficient verifiable delay functions. Cryptology ePrint Archive, Report 2018/623 (2018). https://eprint.iacr.org/2018/623

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations