Advertisement

Subvector Commitments with Application to Succinct Arguments

  • Russell W. F. LaiEmail author
  • Giulio MalavoltaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11692)

Abstract

We put forward the notion of subvector commitments (SVC): An SVC allows one to open a committed vector at a set of positions, where the opening size is independent of length of the committed vector and the number of positions to be opened. We propose two constructions under variants of the root assumption and the CDH assumption, respectively. We further generalize SVC to a notion called linear map commitments (LMC), which allows one to open a committed vector to its images under linear maps with a single short message, and propose a construction over pairing groups.

Equipped with these newly developed tools, we revisit the “CS proofs” paradigm [Micali, FOCS 1994] which turns any arguments with public-coin verifiers into non-interactive arguments using the Fiat-Shamir transform in the random oracle model. We propose a compiler that turns any (linear, resp.) PCP into a non-interactive argument, using exclusively SVCs (LMCs, resp.). For an approximate 80 bits of soundness, we highlight the following new implications:
  1. 1.

    There exists a succinct non-interactive argument of knowledge (SNARK) with public-coin setup with proofs of size 5360 bits, under the adaptive root assumption over class groups of imaginary quadratic orders against adversaries with runtime \(2^{128}\). At the time of writing, this is the shortest SNARK with public-coin setup.

     
  2. 2.

    There exists a non-interactive argument with private-coin setup, where proofs consist of 2 group elements and 3 field elements, in the generic bilinear group model.

     

Notes

Acknoweldgements

We thank Yuval Ishai and Eran Tromer for insighful discussions and comments on an earlier draft of this work. Research supported in part by a gift from DoS Networks.

References

  1. 1.
    Abdolmaleki, B., Baghery, K., Lipmaa, H., Zając, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 3–33. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_1CrossRefGoogle Scholar
  2. 2.
    Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 2087–2104. ACM (2017)Google Scholar
  3. 3.
    Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM (JACM) 45(1), 70–122 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bach, E.: Explicit bounds for primality testing and related problems. Math. Comput. 55(191), 355–380 (1990)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: 2015 IEEE Symposium on Security and Privacy, pp. 271–286. IEEE Computer Society Press, May 2015Google Scholar
  6. 6.
    Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39927-8_28CrossRefGoogle Scholar
  7. 7.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006).  https://doi.org/10.1007/11693383_22CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 62–73. ACM Press, November 1993Google Scholar
  9. 9.
    Ben-Sasson, E., et al.: Computational integrity with a public random string from quasi-linear PCPs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 551–579. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56617-7_19CrossRefGoogle Scholar
  10. 10.
    Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Fast Reed-Solomon interactive oracle proofs of proximity. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 134 (2017)Google Scholar
  11. 11.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_6CrossRefzbMATHGoogle Scholar
  12. 12.
    Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: transparent succinct arguments for R1CS. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 103–128. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17653-2_4CrossRefGoogle Scholar
  13. 13.
    Ben-Sasson, E., Chiesa, A., Spooner, N.: Interactive oracle proofs. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 31–60. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_2CrossRefGoogle Scholar
  14. 14.
    Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via cycles of elliptic curves. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 276–294. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_16CrossRefGoogle Scholar
  15. 15.
    Bitansky, N., et al.: The hunting of the SNARK. J. Cryptol. 30(4), 989–1066 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resistance to succinct non-interactive arguments of knowledge, and back again. In: Goldwasser, S. (ed.) ITCS 2012, pp. 326–349. ACM, January 2012Google Scholar
  17. 17.
    Bitansky, N., Chiesa, A., Ishai, Y., Paneth, O., Ostrovsky, R.: Succinct non-interactive arguments via linear interactive proofs. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 315–333. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_18CrossRefGoogle Scholar
  18. 18.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_14CrossRefGoogle Scholar
  19. 19.
    Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. Technical report, Cryptology ePrint Archive, Report 2018/712 (2018). https://eprint.iacr.org/2018/712Google Scholar
  20. 20.
    Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. Cryptology ePrint Archive, Report 2018/1188 (2018). https://eprint.iacr.org/2018/1188
  21. 21.
    Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_12CrossRefzbMATHGoogle Scholar
  22. 22.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci. 37(2), 156–189 (1988)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Buchmann, J., Hamdy, S.: A survey on IQ-cryptography. Technical report TI-4/01, Technische Universitäat Darmstadt, Fachbereich Informatik (2000)Google Scholar
  24. 24.
    Buchmann, J., Takagi, T., Vollmer, U.: Number field cryptography. In: High Primes and Misdemeanours: Lectures in Honour of the 60th Birthday of Hugh Cowie Williams, vol. 41, pp. 111–125 (2004)Google Scholar
  25. 25.
    Buchmann, J., Williams, H.C.: A key-exchange system based on imaginary quadratic fields. J. Cryptol. 1(2), 107–118 (1988)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018Google Scholar
  27. 27.
    Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_5CrossRefGoogle Scholar
  28. 28.
    Chiesa, A., Tromer, E., Virza, M.: Cluster computing in zero knowledge. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 371–403. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_13CrossRefzbMATHGoogle Scholar
  29. 29.
    Costello, C.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, pp. 253–270. IEEE Computer Society Press, May 2015Google Scholar
  30. 30.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_8CrossRefGoogle Scholar
  31. 31.
    Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_17CrossRefzbMATHGoogle Scholar
  32. 32.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_28CrossRefGoogle Scholar
  33. 33.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_28CrossRefGoogle Scholar
  34. 34.
    Di Crescenzo, G., Lipmaa, H.: Succinct NP proofs from an extractability assumption. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 175–185. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69407-6_21CrossRefGoogle Scholar
  35. 35.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  36. 36.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_12CrossRefGoogle Scholar
  37. 37.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37CrossRefGoogle Scholar
  38. 38.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_19CrossRefGoogle Scholar
  40. 40.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_11CrossRefGoogle Scholar
  41. 41.
    Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 234–247. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_18CrossRefGoogle Scholar
  42. 42.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Efficient arguments without short PCPs. In: Twenty-Second Annual IEEE Conference on 2007 Computational Complexity, CCC 2007, pp. 278–291. IEEE (2007)Google Scholar
  43. 43.
    Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press, June 2007Google Scholar
  44. 44.
    Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 177–194. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17373-8_11CrossRefGoogle Scholar
  45. 45.
    Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992Google Scholar
  46. 46.
    Kilian, J.: Improved efficient arguments (preliminary version). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 311–324. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-44750-4_25CrossRefGoogle Scholar
  47. 47.
    Lai, R.W.F., Malavolta, G.: Subvector commitments with applications to succinct arguments. Cryptology ePrint Archive, Report 2018/705 (2018). https://eprint.iacr.org/2018/705
  48. 48.
    Libert, B., Ramanna, S., Yung, M.: Functional commitment schemes: from polynomial commitments to pairing-based accumulators from simple assumptions. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., Sangiorgi, D. (eds.) ICALP 2016, LIPIcs, vol. 55, pp. 30:1–30:14. Schloss Dagstuhl, July 2016Google Scholar
  49. 49.
    Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016, Part I. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_5CrossRefGoogle Scholar
  50. 50.
    Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28914-9_10CrossRefGoogle Scholar
  51. 51.
    Lipmaa, H.: Secure accumulators from Euclidean rings without trusted setup. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 224–240. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31284-7_14CrossRefGoogle Scholar
  52. 52.
    Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-48184-2_32CrossRefGoogle Scholar
  53. 53.
    Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press, November 1994Google Scholar
  54. 54.
    Micali, S., Rabin, M., Kilian, J.: Zero-knowledge sets. In: 44th FOCS, pp. 80–91. IEEE Computer Society Press, October 2003Google Scholar
  55. 55.
    Mie, T.: Polylogarithmic two-round argument systems. J. Math. Cryptol. 2(4), 343–363 (2008)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992).  https://doi.org/10.1007/3-540-46766-1_9CrossRefGoogle Scholar
  57. 57.
    Reingold, O., Rothblum, G.N., Rothblum, R.D. Constant-round interactive proofs for delegating computation. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 49–62. ACM Press, June 2016Google Scholar
  58. 58.
    Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-540-47942-0_21CrossRefGoogle Scholar
  59. 59.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_18CrossRefGoogle Scholar
  60. 60.
    Shoup, V.: OAEP reconsidered. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 239–259. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_15CrossRefGoogle Scholar
  61. 61.
    Valiant, P.: Incrementally verifiable computation or proofs of knowledge imply time/space efficiency. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 1–18. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_1CrossRefzbMATHGoogle Scholar
  62. 62.
    Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup (2018)Google Scholar
  63. 63.
    Wesolowski, B.: Efficient verifiable delay functions. IACR Cryptology ePrint Archive 2018/623 (2018)Google Scholar
  64. 64.
    Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE Symposium on Security and Privacy, pp. 863–880. IEEE Computer Society Press, May 2017Google Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  1. 1.Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations