Advertisement

Network Modeling and Therapeutic Techniques

  • Theodore WassermanEmail author
  • Lori Drucker Wasserman
Chapter
Part of the Neural Network Model: Applications and Implications book series (NNMAI)

Abstract

By whatever technique used to facilitate the process, most therapy in a clinical setting consists of taking a previously learned set of maladaptive beliefs and behaviors and replacing them with newly learned adaptive beliefs and behaviors. Even therapeutic techniques that do not focus directly on behavior change can be understood in terms of implied change. The principles of learning are reviewed.

Keywords

Semantics Neural networks Learning Chunking Reweighting Epigenetics Motivation 

References

  1. Aarts, H., & Dijksterhuis, A. (2000). Habits as knowledge structures: Automaticity in goal-directed behavior. Journal of Personality and Social Psychology, 78(1), 53–63.  https://doi.org/10.1037/0022-3514.78.1.53.
  2. Achard, S., Salvador, R., Witcher, B., Suckling, J., & Bullmore, E. (2006, 4 January). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 63–72.  https://doi.org/10.1523/jneurosci.3874-05.
  3. Amstrong, T. (2015). The myth of the normal brain: Embracing neurodiversity. AMA Journal of Ethics 17(4), 348–352.  https://doi.org/10.1001/journalofethics.2015.17.4.msoc1-1504.
  4. Atzaba-Poria, N., Pike, A., & Deater-Deckard, K. (2004). Do risk factors for problem behaviour act in a cumulative manner? An examination of ethnic minority and majority children through an ecological perspective. Journal of Child Psychology and Psychiatry, 45(4), 707–718.  https://doi.org/10.1111/j.1469-7610.2004.00265.x.
  5. Bar, R., & DeSouza, J. (2016). Tracking plasticity; effects of long term rehersal in expert dancers encoding music to movement. PLoS ONE, 11(1), e147732.  https://doi.org/10.1371/journal.pone.0147731,online.CrossRefGoogle Scholar
  6. Bargh, J., & Chartrand, T. (1999). The unbearable automaticity of being. American Psychologist, 54(7), 462–479.  https://doi.org/10.1037/0003-066x.54.7.462.
  7. Bays, P., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 8, 321(5890), 851–854.  https://doi.org/10.1126/science.1158023.
  8. Beck, A., & Clark, D. (1997). An information processing model of anxiety automatic and startegic processes. Behavior Research and Therapy, 35(I), 49–58.CrossRefGoogle Scholar
  9. Berkman, E., Hutcherson, C., Livingston, J., Kahn, L., & Inzlicht, M. (2017). Self-control as value-based choice. Current Directions in Psychological 26(5), 1–7.  https://doi.org/10.1177/0963721417704394.
  10. Bielock, S., Jellison, W., Rydell, R., McConnell, A., & Carr, T. (2006). On the causal mechanisms of stereotype threat: Can skills that don’t rely heavily on working memory still be threatened? Personality and Social Psychology Bulletin 32(8), 1059–1071.  https://doi.org/10.1177/0146167206288489.
  11. Botvinick, M., Braver, T., Barch, D., Carter, C., & Cohen, J. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.CrossRefGoogle Scholar
  12. Brewin, C., & Beaton, A. (2002). Thought suppression, intelligence, and working memory capacity. Behavior Research and Therapy, 40(8), 923–930.  https://doi.org/10.1016/s0005-7967(01)00127-9.
  13. Bruel-Jungerman, R., Davis, D., & Laroche, S. (2007). Brain plasticity mechanisms and memory: A party of four. Neuroscientist, 13, 492–505.CrossRefGoogle Scholar
  14. Buehler, C., & Gerard, G. (2013). Cumulative family risk predicts increases in adjustment difficulties across early adolescence. Journal of Youth and Adolescence, 42(6), 905–920.Google Scholar
  15. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. National Review of Neuroscience, 10(3), 186–198.  https://doi.org/10.1038/nrn2575.
  16. Callicott, J., Mattay, V., Bertolino, A., Finn, A., Coppola, R., Frank, J., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.CrossRefGoogle Scholar
  17. Carlson, R. A., & Lundy, D. H. (1992). Consistency and restructuring in learning cognitive procedural sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18(1), 127–141. http://dx.doi.org/10.1037/0278-7393.18.1.127.
  18. Carmicheal, C., & Hayes, B. (2001). Prior knowledge and exemplar encoding in childrens concept acquisition. Child Development, 72(4), 1071–1090.CrossRefGoogle Scholar
  19. Chinn, C., & Brewer, W. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.  https://doi.org/10.3102/00346543063001001.
  20. Clark, A. (2006). Language, embodiment, and the cognitive niche. Cognitive Sciences, 10(8), 370–374.CrossRefGoogle Scholar
  21. Cole, M., Reposv, G., & Anticivic, A. (2014, December). The frontoparietal control system. Neuroscientist, 20(6), 652–664.  https://doi.org/10.1177/1073858414525995.
  22. Cohen, G. L., & Sherman, D. K. (2014). The psychology of change: Self-affirmation and social psychological intervention. Annual Review of Psychology, 65, 333–371.Google Scholar
  23. Cramer, S., Sur, M., Dobkin, B., O’Brien, C., Sanger, T., Trojanowski, J., … Duffy, C. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(6), 1591–1609.  https://doi.org/10.1093/brain/awr039.
  24. Dayan, E., & Cohen, L. (2011). Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443–454.  https://doi.org/10.1016/j.neuron.2011.10.008.
  25. Demaria, S., Aune, J., & Jodlowski, D. (2008). Bruno Bettleheim, autism and the rhetoric of scientific authority. In M. Osteen (Ed.), Autism and representation (pp. 65–77). New York: Routledge.Google Scholar
  26. Diessel, H. (2014). Demonstratives, frames of reference, and semantic universals of space. Language and Linguistics Compass, 8(3), 116–132.CrossRefGoogle Scholar
  27. Dijksterhuis, A., & Aarts, A. (2010). Goals, attention, and (Un)consciousness. Annual Review of Psychology, 61, 467–490.CrossRefGoogle Scholar
  28. Dijksterhuis, A., & Meurs, S. (2006). Where creativity resides: the generative power of unconscious thought. Consciousness and Cognition, 15(1), 135–146.  https://doi.org/10.1016/j.concog.2005.04.007.
  29. Ellis, A. (2008). Rational emotive behavior therapy. In J. Corsini, & D. Wedding, Current psychotherapies (pp. 187–221.). Belmont, CA: Thomson.Google Scholar
  30. Elman, J. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 71–99.CrossRefGoogle Scholar
  31. Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: A connectionist perspective on development. Cambridge, Mass: The MIT Press.Google Scholar
  32. Endsley, M., & Garland, D. (2000). Situation awareness analysis and measurement. N.J.: Erlbaum.Google Scholar
  33. Felder, R., & Brent, R. (2003). Learning by doing. Chemical Engineering Education, 37(4), 282–283.Google Scholar
  34. Fields, D. (2008, July). White matter in learning, cognition and psychiatric disorders. Trends in Neuroscience, 31(7), 361–370.  https://doi.org/10.1016/j.tins.2008.04.001.
  35. Fields, D. (2010, November 5). Change in the brain’s white matter the role of the brain’s white matter in active learning and memory may be underestimated. Science, 330(6005), 768–769.  https://doi.org/10.1126/science.1199139.
  36. Fonollosa, J., Neftci, E., & Rabinovich, M. (2015). Learning of chunking sequences in cognition and behavior. PLOS: Computational Biology.  https://doi.org/10.1371/journal.pcbi.1004592.
  37. Graybiel, A. (2004). Network-level neuroplasticity in cortico-basal ganglia pathways. Parkinsonism and Related Disorders, 10, 293–296.Google Scholar
  38. Greenberg, L., & Safran, J. (1981). Encoding and cognitive therapy: Changing what clients attend to. Psychotherapy: Theory, Research & Practice, 18(2), 163–169. http://dx.doi.org/10.1037/h0086076.
  39. Haber, S., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imagery. Neuropshycopharmacology, 35(1), 4–26.Google Scholar
  40. Hart, G., Leung, B. K., & Balleine, B. W. (2014). Dorsal and ventral streams: The distinct role of striatal sub-regions in the acquisition and performance of goal-directed actions. Neurobiology of Learning and Memory, 108, 104–118.  https://doi.org/10.1016/j.nlm.2013.11.00.
  41. Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.Google Scholar
  42. Hoffman, L. (2016). New dimensions in animal modeling of neuropsychiatric disorders. In: L. Hoffman, Modeling neuropsychiatric disorders in laboratory animals (pp. 243–302). Sawston, UK: Woodhead Publishing.  https://doi.org/10.1016/B978-0-08-100099-1.00005-4.
  43. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679–709.  https://doi.org/10.1037//0033-295x.109.4.679.
  44. Holtgraves, T. M., & Kashima, Y. (2008). Language, meaning, and social cognition. Personality and Social Psychology Review, 12(1), 173–194.  https://doi.org/10.1177/1088868307309605.
  45. Jensen, P., Mrazek, D., Knapp, P. K., Steinberg, L., Pfeffer, C., & Shapiro, T. (1997). Evolution and revolution in child psychiatry: ADHD as a disorder of adaptation. Journal American Academy Child and Adolescent Psychiatry., 36(12), 1672–1679.CrossRefGoogle Scholar
  46. Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York: Springer.Google Scholar
  47. Lewis, D. A. (2009). Neuroplasticity of excitatory and inhibitory cortical circuits in schizophrenia. Dialogues in Clinical Neuroscience, 11(3), 269–280.Google Scholar
  48. Lipson, M. (1982). Learning new information from text: The role of prior knowledge and reading ability. Journal of Literacy Research, 14(3), 243–261.  https://doi.org/10.1080/10862968209547453.
  49. Logan, G. D., & Klapp, S. T. (1991). Automatizing alphabet arithmetic: I. Is extended practice necessary to produce automaticity? Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(2), 179–195.  https://doi.org/10.1037/0278-7393.17.2.179.
  50. Lord, C., Ross, L., & Lepper, M. (1979). Biased assimilation and attitude polarization: the effects of prior theories on subsequently considered evidence. Journal of Personality and Social Psychology, 37(11), 2098–2109.Google Scholar
  51. Majid, A., Bowerman, M., Kita, S., Haun, D. B., & Levinson, S. C. (2004). Can language restructure cognition? The case for space. Trends in Cognitive Sciences, 8(3), 108–114. http://dx.doi.org/10.1016/j.tics.2004.01.003.
  52. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., … & Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45(5), 651–660.Google Scholar
  53. McClure, S., York, M., & Montague, P. (2004). The neural substrates of reward processing in humans: The modern role of fMRI. Neuroscientist, 10(3), 260–268.  https://doi.org/10.1177/1073858404263526.
  54. McGinty, V., Hayden, B., Heilbronner, S., Dumont, E., Graves, S., Mirrione, M., … Haber, S. (2011, November 20). Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 motivational and neural networks conference. Behav Brain Research, 225, 348–357. Retrieved from National Institute of Health.  https://doi.org/10.1016/j.bbr.2011.07.036.
  55. Menon, V. (2013). Developmental pathways to functional brain networks: emerging principles. Trends in Cognitive Science, 17(12), 627–640.  https://doi.org/10.1016/j.tics.2013.09.015.
  56. Miltner, W., Lemke, U., Weis, T., Holroyd, C., Scheffers, M., & Coles, M. (2003). Implementation of error-processing in the human anterior cingulate cortex: a source analysis of the magnetic equivalent of the error-related negativity. Biological Psychology, 64, 157–166.CrossRefGoogle Scholar
  57. Molfese, A. (2011). Advancing neuroscience through epigenetics: Molecular mechanisms of learning and memory. Developmental Neuropsychology, 36(7), 810–827.  https://doi.org/10.1080/87565641.2011.606395.
  58. Moors, A., & De Houwer, J. (2006). Automaticity: A theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326.  https://doi.org/10.1037/0033-2909.132.2.297.
  59. NASA. (2018, January 31). NASA twins study confirms preliminary findings. Retrieved from NASA https://www.nasa.gov/feature/nasa-twins-study-confirms-preliminary-findings.
  60. Neches, R. (1987). Learning through Incremental Reinforcement of Proceedures. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development (pp. 163–222). Boston, Mass: The Massachusetts Institute of Technology.Google Scholar
  61. Nomi, J., Farrant, K., Damaraju, E., Rachakonda, S., Calhoun,V., & Uddin, L. (2016, May). Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Human Brain Mapping, 37(5), 1770–1787.Google Scholar
  62. Nyhan, B., & Reifler, J. (2010). When corrections fail: the persistence of political misperceptions. Journal of Political Behavior, 32(2), 303–330.  https://doi.org/10.1007/s11109-010-9112-2.
  63. Ochsner, K., Hughes, B., Robertson, E., Cooper, J., & Gabrieli, J. (2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience 21(9), 1841–1854. http://hdl.handle.net/1721.1/58096.
  64. Patten, S. (2008). Sensitization: The sine qua non of the depressive disorders? Medical Hypotheses, 71, 872–875.CrossRefGoogle Scholar
  65. Pennebaker, J., & Francis, M. (1996). Cognitive, emotional, and language processes in disclosure. Cognition and Emotion, 10(6), 601–612.CrossRefGoogle Scholar
  66. Perlmutter, M., & Nyquist, L. (1990, July). Relationships between self-reported physical and mental health and intelligence performance across adulthood. Journal of Gerontology, 45(4), 145–155.  https://doi.org/10.1093/geronj/45.4.
  67. Petrov, A., Dosher, B., & Lu, Z. (2005). The dynamics of perceptual learning: An incremental reweighting model. Psychological Review, 112(4), 715–743.  https://doi.org/10.1037/0033-295x.112.4.715.
  68. Piaget, J. (1974). Adaptation and intelligence: organic selection and phenocopy. Chicago: University of Chicago Press.Google Scholar
  69. Piaget, J. (1977). Intellectual evolution from adolescence to adulthood. Cambridge: Cambridge University Press.Google Scholar
  70. Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223–231.  https://doi.org/10.1002/j.2168-9830.2004.tb00809.x.
  71. Pyc, M., & Rawson, K. (2010). Why testing improves memory: mediator effectiveness hypothesis. Science, 330, 335.Google Scholar
  72. Raymont, V., & Grafman, J. (2006). Cognitive neural plasticity during learning and recovery from brain damage. Progress in Brain Research, 157, 199–206.CrossRefGoogle Scholar
  73. Russell, C., & Baillie, J. (2017). Treatable traits and therapeutic targets: Goals for systems biology in infectious disease. Current Opinion in Systems Biology, 004(3), 139–145.  https://doi.org/10.1016/j.coisb.2017.04.003.
  74. Rutter, M. (2002, January–February). Nature, nurture, and development: from evangelism through science toward policy and practice. Child Development, 73(1), 1–21.Google Scholar
  75. Sagi, Y., Tavor, I., Hofstetter, S., Tzur-Moryosef, S., Blumenfeld-Katzir, T., & Assaf, Y. (2012, March 22). Learning in the fast lane: New insights into neuroplasticity. Neuron, 73(6), 1195–1203.  https://doi.org/10.1016/j.neuron.2012.01.025.
  76. Schmithorst, V., Wilke, M., Dardzinski, B., & Holland, S. (2005). Cognitive functions correlate with white matter architecture in a normal pediatric population; a diffusion tensor MR imaging study. Human Brain Mapping, 26(2), 139–147.CrossRefGoogle Scholar
  77. Shell, D., Brooks, D., Trainin, G., Wilson, K., Kauffman, D., & Herr, L. (2010). The unified learning model. New York: Springer.CrossRefGoogle Scholar
  78. Steele, C. M. (1988). The psychology of self-affirmation: sustaining the integrity of the self. In Advances in experimental social psychology, 21, 261–302.Google Scholar
  79. Stiles, W., Meshot, C., Anderson, T., & Sloan, W. (1992). Assimilation of problematic experiences: The case of John Jones. Psychotherapy Research, 2(2), 81–101.  https://doi.org/10.1080/10503309212331332874.
  80. Stuss, D., & Knight, R. (2002). Principles of frontal lobe function. New York: Oxford University Press.CrossRefGoogle Scholar
  81. Taber, C., & Lodge, M. (2006). Motivated skepticism in the evaluation of political beliefs. American Journal of Political Science, 50(3), 755–769.Google Scholar
  82. Thatch, W. (1997). Context-response linkage. International Review of Neurobiology 41, 599–611.  https://doi.org/10.1016/s0074-7742(08)60372-4.
  83. Thiel, A., Thiel, J., Oddo, S., Langnickel, R., Brand, M. M., & Stirn, A. (2014). CD-Patients with washing symptoms show a specific brain network when confronted with aggressive, sexual and disgusting stimuli. Neuropsychoanalysis: An Interdisciplinary Journal for Psychoanalysis and the Neurosciences  https://doi.org/10.1080/15294145.2014.976649, http://www.tandfonline.com/doi/abs/10.1080/15294145.2014.976649#.VHVnSMlRaU9 (Online).
  84. Thorndike, E. (1932). The fundamentals of learning. New York: Teachers College Press.CrossRefGoogle Scholar
  85. van den Heuvel, M., Mandl, R., & Hulshoff-Pol, H. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping (10), 3127–3141.  https://doi.org/10.1002/hbm.20737.
  86. van Merriënboer, J., Kester, L., & Paas, F. (2006). Teaching complex rather than simple tasks: Balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology, 20(3), 343–352.  https://doi.org/10.1002/acp.1250.
  87. Vygotsky, L. (1934/1986). Thought and language. Cambridge, MA: MIT Press.Google Scholar
  88. Wasserman, T., & Wasserman, L. (2015). The misnomer of attention-deficit hyperactivity disorder. Applied Neuropsychology: Child, 4(2), 116–122.Google Scholar
  89. Wasserman, T., & Wasserman, L. (2016). Deapthologizing psychopathology. New York: Springer.Google Scholar
  90. Watson-Gegeo, K. (2004). Mind, language, and epistemology: Toward a language socialization paradigm for SLA. The Mordern Langauge Journal, 88(3), 331–350.  https://doi.org/10.1111/j.0026-7902.2004.00233.x.
  91. What is the Connectome. (2014). Retrieved from The Brain Preservation Foundation from http://www.brainpreservation.org/content/connectome.
  92. Woods, W., Rhodes, N., & Biek, M. (1995). Working Memory and Attitude Strength, An Information Processing Analysis. In R. Petty & J. Krosnick (Eds.), Attitude strength: Antecedents and consequences (pp. 283–313). New York: Psychology Press.Google Scholar
  93. Wood, J. V., Perunovic, W. Q. E., & Lee, J. W. (2009). Positive self-statements; power for some peril for others. Psychological Science, 20(7), 860–866.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Neurocognitive Learning TherapyWasserman & Drucker PABoca RatonUSA

Personalised recommendations