Advertisement

The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple

  • D. V. DivakovEmail author
  • A. L. Sevastianov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

Computational problems of electrodynamics require an approximate solution of the system of Maxwell’s vector equations for regions with different geometries. The main methods for solving problems with the Maxwell equations are either finite difference methods or methods based on the Galerkin and Kantorovich expansions, or the finite element method. Each of the classes of methods is characterised by a wide range of permissible objects, but in each of the methods, the solution contains a large number of quantities known only in numerical form.

We have chosen a different approach, in which to describe the waveguide propagation of electromagnetic radiation we propose using the model of adiabatic waveguide modes. This model allows reducing Maxwell equations to a system of ordinary differential equations, which allows analysis of its solutions at the symbolic level.

A fundamental system of solutions of the system is constructed in symbolic form. A numerical method for computing the guided modes of a planar three-layer open waveguide is formulated and implemented using a vector model of the adiabatic waveguide modes. Phase constants calculated in the framework of the model of adiabatic waveguide modes were verified by comparison with those calculated in the framework of the scalar model.

Keywords

Model of adiabatic waveguide modes Integrated optical waveguide Symbolic-numerical method Waveguide propagation of electromagnetic radiation 

References

  1. 1.
    Babich, V.M., Buldyrev, V.S.: Asymptotic Methods in Short-Wave Diffraction Problems. Nauka, Moscow (1972). [English translation: Springer Series on Wave Phenomena 4. Springer, Berlin Heidelberg New York 1991]Google Scholar
  2. 2.
    Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. Wiley, New York (1964)zbMATHGoogle Scholar
  3. 3.
    Fletcher, C.A.J.: Computational Galerkin Methods. Springer, Heidelberg (1984).  https://doi.org/10.1007/978-3-642-85949-6CrossRefzbMATHGoogle Scholar
  4. 4.
    Gusev, A.A., et al.: Symbolic-numerical algorithms for solving the parametric self-adjoint 2D elliptic boundary-value problem using high-accuracy finite element method. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 151–166. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66320-3_12CrossRefGoogle Scholar
  5. 5.
    Sevastyanov, L.A., Sevastyanov, A.L., Tyutyunnik, A.A.: Analytical calculations in maple to implement the method of adiabatic modes for modelling smoothly irregular integrated optical waveguide structures. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 419–431. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10515-4_30CrossRefzbMATHGoogle Scholar
  6. 6.
    Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  7. 7.
    Ciarlet, P.: The Finite Element Method for Elliptic Problems. North Holland Publishing Company, Amsterdam (1978)zbMATHGoogle Scholar
  8. 8.
    Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  9. 9.
    Bogolyubov, A.N., Mukhartova, Yu.V., Gao, J., Bogolyubov, N.A.: Mathematical modeling of plane chiral waveguide using mixed finite elements. In: Progress in Electromagnetics Research Symposium, pp. 1216–1219 (2012)Google Scholar
  10. 10.
    Bogolyubov, A.N., Mukhartova, Y.V., Gao, T.: Calculation of a parallel-plate waveguide with a chiral insert by the mixed finite element method. Math. Models Comput. Simul. 5(5), 416–428 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mukhartova, Y.V., Mongush, O.O., Bogolyubov, A.N.: Application of the finite-element method for solving a spectral problem in a waveguide with piecewise constant bi-isotropic filling. J. Commun. Technol. Electronics 62(1), 1–13 (2017)CrossRefGoogle Scholar
  12. 12.
    Adams, M.J.: An Introduction to Optical Waveguides. Wiley, New York (1981)Google Scholar
  13. 13.
    Marcuse, D.: Light Transmission Optics. Van Nostrand, New York (1974)Google Scholar
  14. 14.
    Tamir, T.: Guided-Wave Optoelectronics. Springer, Berlin (1990).  https://doi.org/10.1007/978-3-642-97074-0CrossRefGoogle Scholar
  15. 15.
    Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)zbMATHGoogle Scholar
  16. 16.
    Hartman, P.: Ordinary Differential Equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics, Philadelphia (2002). [1964]CrossRefGoogle Scholar
  17. 17.
    Johnson, W.: A Treatise on Ordinary and Partial Differential Equations. Wiley, New York (1913). In University of Michigan Historical Math CollectionGoogle Scholar
  18. 18.
    Polyanin, A.D., Zaitsev, V.F., Moussiaux, A.: Handbook of First Order Partial Differential Equations. Taylor & Francis, London (2002)zbMATHGoogle Scholar
  19. 19.
    Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, Boston (1997)zbMATHGoogle Scholar
  20. 20.
    Mathematics-based software and services for education, engineering, and research. https://www.maplesoft.com/
  21. 21.
    Lovetskiy, K.P., Gevorkyan, M.N., Kulyabov, D.S., Sevastyanov, A.L., Sevastyanov, L.A.: Waveguide modes of a planar optical waveguide. Math. Model. Geom. 3(01), 43–63 (2015)CrossRefGoogle Scholar
  22. 22.
    Ayryan, E.A., Egorov, A.A., Michuk, E.N., Sevastyanov, A.L., Sevastianov, L.A., Stavtsev, A.B.: Representations of Guided Modes of Integrated-Optical Multilayer Thin-Film Waveguides. E11–2011-31, LIT preprints (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations