Advertisement

Determining the Heilbronn Configuration of Seven Points in Triangles via Symbolic Computation

  • Zhenbing ZengEmail author
  • Liangyu ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

In this paper we first recall some rigorously proved results related to the Heilbronn numbers and the corresponding optimal configurations of \(n=5,6,7\) points in squares, disks, and general convex bodies K in the plane, \(n=5,6\) points in triangles and a bundle of approximate results obtained by numeric computation in the Introduction section. And then in the second section we will present a proof to a conjecture on the Heilbronn number for seven points in the triangle through solving a group of non-linear optimization problems via symbolic computation. In the third section we list three unsolved well-formed such non-linear programming problems corresponding to Heilbronn configurations for \(n=8,9\) points in squares and 8 points in triangle, we expect they can be solved by similar method we used in the Section two. In the final section we mention two generalizations of the classic Heilbronn triangle problem. The paper aims to provide a concise guide to further studies on Heilbronn-type problems for small number of points in specific convex bodies.

Keywords

Heilbronn number Combinatorial geometry optimization Symbolic computation 

References

  1. 1.
    Barequet, G.: A lower bound for for Heilbronn’s triangle problem in \(d\) dimensions. SIAM J. Discrete Math. 14(2), 230–236 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barequet, G., Shaikhet, A.: The on-line Heilbronn’s triangle problem in \(d\) dimensions. Discrete Comput. Geom. 38(1), 51–60 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brass, P.: An upper bound for the \(d\)-dimensional analogue of Heilbronn’s triangle problem. SIAM J. Discrete Math. 19(1), 192–195 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cantrell, D.: The Heilbronn problem for triangles. http://www2.stetson.edu/efriedma/heiltri/. Accessed 5 Apr 2019
  5. 5.
    Chen, L., Zeng, Z., Zhou, W.: An upper bound of Heilbronn number for eight points in triangles. J. Comb. Optim. 28(4), 854–874 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chen, L., Xu, Y., Zeng, Z.: Searching approximate global optimal Heilbronn configurations of nine points in the unit square via GPGPU computing. J. Global Optim. 68(1), 147–167 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Comellas, F., Yebra, J.L.A.: New lower bounds for Heilbronn numbers. Elec. J. Comb. 9, 10 (2002). http://www.combinatorics.org/Volume_9/PDF/v9i1r6.pdf. Accessed 5 Apr 2019
  8. 8.
    De Comité, F., Delahaye, J.-P.: Automated proofs in geometry : computing upper bounds for the Heilbronn problem for triangles. https://arxiv.org/pdf/0911.4375.pdf. Accessed 5 Apr 2019
  9. 9.
    Dress, A., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex body. Combinatorics and Graph Theory 1995. vol. 1 (Hefei), pp. 97–118, World Sci. Publishing, River Edge (1995)Google Scholar
  10. 10.
    Dress, A., Yang, L., Zeng, Z.: Heilbronn problem for six points in a planar convex body. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 173–190. Springer, Boston (1995)CrossRefGoogle Scholar
  11. 11.
    Friedman, E.: The Heilbronn problem for squares. https://www2.stetson.edu/friedma/heilbronn/. Accessed 5 Apr 2019
  12. 12.
    Friedman, E.: The Heilbronn problem for triangles. https://www2.stetson.edu/efriedma/heiltri/. Accessed 5 Apr 2019
  13. 13.
    Gavin, H., Scruggs, J.: Constrained optimization using Lagrange multipliers. http://people.duke.edu/hpgavin/cee201/LagrangeMultipliers.pdf
  14. 14.
    Goldberg, M.: Maximizing the smallest triangle made by points in a square. Math. Mag. 45, 135–144 (1972)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kahle, M.: Points in a triangle forcing small triangles. Geombinatorics XVIII, 114–128 (2008). arxiv.org/abs/0811.2449v1MathSciNetGoogle Scholar
  16. 16.
    Karpov, P.: Notable results. https://inversed.ru/Ascension.htm#results. Accessed 5 Apr 2019
  17. 17.
    Kómlos, J., Pintz, J., Szemerédi, E.: On Heilbronn’s triangle problem. J. London Math. Soc. 24, 385–396 (1981)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kómlos, J., Pintz, J., Szemerédi, E.: A lower bound for Heilbronn’s triangle problem. J. London Math. Soc. 25, 13–24 (1982) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Pegg Jr., E.: Heilbronn triangles in the unit square. Wolfram Demonstrations Project. http://demonstrations.wolfram.com/HeilbronnTrianglesintheunitSquare/. Accessed 6 Apr 2019
  20. 20.
    Roth, K.F.: On a problem of Heilbronn. J. London Math. Soc. 26, 198–204 (1951)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Roth, K.F.: On a problem of Heilbronn II. Proc. London Math Soc. 3(25), 193–212 (1972)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Roth, K.F.: On a problem of Heilbronn III. Proc. London Math Soc. 3(25), 543–549 (1972)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Roth, K.F.: Estimation of the area of the smallest triangle obtained by selecting three out of \(n\) points in a disc of unit area. Proc. Symp. Pure Mathematics 24, AMS, Providence, 251–262 (1973)Google Scholar
  24. 24.
    Roth, K.F.: Developments in Heilbronn’s triangle problem. Adv. Math. 22, 364–385 (1976)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Schmidt, W.: On a problem of Heilbronn. J. London Math. Soc. 4, 545–550 (1971/1972)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sturmfels, S: Solving systems of polynomial equations. https://math.berkeley.edu/bernd/cbms.pdf. Accessed 25 May 2019
  27. 27.
    Tal, A.: Algorithms for Heilbronn’s triangle problem. Israel Institute of Technology. Master Thesis. May 2009Google Scholar
  28. 28.
    Weisstein E.W.: Heilbronn triangle problem. From MathWorld - A Wolfram Web Resource. http://mathworld.wolfram.com/HeilbronnTriangleProblem.html
  29. 29.
    Yang, L., Zeng, Z.: Heilbronn problem for seven points in a planar convex body. In: Du, D.Z., Pardalos, P.M. (eds.) Minimax and Applications. Nonconvex Optimization and Its Applications, vol. 4, pp. 191–218. Springer, Boston (1995)CrossRefGoogle Scholar
  30. 30.
    Yang, L., Zhang, J., Zeng, Z.: Heilbronn problem for five points. Int’l Centre Theoret. Physics preprint IC/91/252 (1991)Google Scholar
  31. 31.
    Yang, L., Zhang, J., Zeng, Z.: On Goldberg’s conjecture: Computing the first several Heilbronn numbers. Universität Bielefeld, Preprint 91–074 (1991)Google Scholar
  32. 32.
    Yang, L., Zhang, J., Zeng, Z.: On exact values of Heilbronn numbers for triangular regions. Universität Bielefeld, Preprint 91–098 (1991)Google Scholar
  33. 33.
    Yang, L., Zhang, J., Zeng, Z.: A conjecture on the first several Heilbronn numbers and a computation. Chinese Ann. Math. Ser. A 13, 503–515 (1992)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang, L., Zhang, J., Zeng, Z.: On the Heilbronn numbers of triangular regions. Acta Math Sinica 37, 678–689 (1994)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Zeng, Z., Chen, L.: On the Heilbronn optimal configuration of seven points in the square. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS (LNAI), vol. 6301, pp. 196–224. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21046-4_11CrossRefGoogle Scholar
  36. 36.
    Zeng, Z., Chen, L.: Heilbronn configuration of eight points in the square. Manuscript. 1–74Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Shanghai UniversityShanghaiChina
  2. 2.East China Normal UniversityShanghaiChina

Personalised recommendations