Advertisement

An Algorithm for Solving a Quartic Diophantine Equation Satisfying Runge’s Condition

  • N. N. OsipovEmail author
  • S. D. Dalinkevich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

In this paper, we suggest an implementation of elementary version of Runge’s method for solving a family of diophantine equations of degree four. Moreover, the corresponding solving algorithm (in its optimized version) is implemented in the computer algebra system PARI/GP.

Keywords

Diophantine equations Runge’s method Computer algebra systems 

References

  1. 1.
    Beukers, F., Tengely, Sz.: An implementation of Runge’s method for diophantine equations. arXiv:math/0512418 [math.NT]
  2. 2.
    Masser, D.W.: Polynomial bounds for diophantine equations. Am. Math. Monthly 93, 486–488 (1986)CrossRefGoogle Scholar
  3. 3.
    Masser, D.W.: Auxiliary Polynomials in Number Theory. Cambridge University Press, Cambridge (2016)CrossRefGoogle Scholar
  4. 4.
    Mordell, L.J.: Diophantine Equations. Academic Press Inc., London (1969)zbMATHGoogle Scholar
  5. 5.
    Osipov, N.N.: Runge’s method for the equations of fourth degree: an elementary approach. In: Matematicheskoe Prosveshchenie, Ser. 3, vol. 19, pp. 178–198. MCCME, Moscow (2015). (in Russian)Google Scholar
  6. 6.
    Osipov, N.N., Gulnova, B.V.: An algorithmic implementation of Runge’s method for cubic diophantine equations. J. Sib. Fed. Univ. Math. Phys. 11(2), 137–147 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Osipov, N.N., Medvedeva, M.I.: An elementary algorithm for solving a diophantine equation of degree four with Runge’s condition. J. Sib. Fed. Univ. Math. Phys. 12(3), 331–341 (2019)Google Scholar
  8. 8.
    Poulakis, D.: A simple method for solving the diophantine equation \(Y^2=X^4+aX^3+bX^2+cX+d\). Elem. Math. 54, 32–36 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Runge, C.: Ueber ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. reine und angew. Math. 100, 425–435 (1887)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sprindz̆uk, V.G.: Classical Diophantine Equations. Springer-Verlag, New York (1993).  https://doi.org/10.1007/BFb0073786CrossRefGoogle Scholar
  11. 11.
    Tengely, S.: On the Diophantine equation \(F(x)=G(y)\). Acta Arith. 110, 185–200 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Walsh, P.G.: A quantitative version of Runge’s theorem on diophantine equations. Acta Arith. 62, 157–172 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations