Advertisement

On Berlekamp–Massey and Berlekamp–Massey–Sakata Algorithms

  • Chenqi MouEmail author
  • Xiaolin Fan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

The Berlekamp–Massey and Berlekamp–Massey–Sakata algorithms compute a minimal polynomial or polynomial set of a linearly recurring sequence or multi-dimensional array. In this paper some underlying properties of and connections between these two algorithms are clarified theoretically: a unified flow chart for both algorithms is proposed to reveal their connections; the polynomials these two algorithms maintain at each iteration are proved to be reciprocal when both algorithms are applied to the same sequence; and the uniqueness of the choices of polynomials from two critical polynomial sets in the Berlekamp–Massey–Sakata algorithm is investigated.

Keywords

Berlekamp–Massey algorithm Berlekamp–Massey–Sakata algorithm Minimal polynomial Reciprocal polynomial 

Notes

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful suggestion which contribute to considerable improvement of this paper.

References

  1. 1.
    Berlekamp, E.: Nonbinary BCH decoding. IEEE Trans. Inf. Theory 14(2), 242–242 (1968)CrossRefGoogle Scholar
  2. 2.
    Berthomieu, J., Boyer, B., Faugère, J.C.: Linear algebra for computing Gröbner bases of linear recursive multidimensional sequences. J. Symb. Comput. 83, 36–67 (2017)CrossRefGoogle Scholar
  3. 3.
    Berthomieu, J., Faugère, J.C.: In-depth comparison of the Berlekamp-Massey-Sakata and the scalar-FGLM algorithms: The adaptive variants. arXiv:1806.00978 (2018, preprint)
  4. 4.
    Berthomieu, J., Faugère, J.C.: A polynomial-division-based algorithm for computing linear recurrence relations. In: Proceedings of ISSAC 2018, pp. 79–86. ACM Press (2018)Google Scholar
  5. 5.
    Bras-Amorós, M., O’Sullivan, M.: The correction capability of the Berlekamp-Massey-Sakata algorithm with majority voting. Appl. Algebra Eng. Commun. Comput. 17(5), 315–335 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer Verlag, New York (2005).  https://doi.org/10.1007/b138611CrossRefzbMATHGoogle Scholar
  7. 7.
    Faugère, J.C., Mou, C.: Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices. In: Proceedings of ISSAC 2011, pp. 115–122. ACM, ACM Press (2011)Google Scholar
  8. 8.
    Faugère, J.C., Mou, C.: Sparse FGLM algorithms. J. Symb. Comput. 80(3), 538–569 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaltofen, E., Yuhasz, G.: On the matrix Berlekamp-Massey algorithm. ACM Trans. Algorithms 9(4), 33 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–127 (1969)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Matsui, H., Sakata, S., Kurihara, M., Mita, S.: Systolic array architecture implementing Berlekamp-Massey-Sakata algorithm for decoding codes on a class of algebraic curves. IEEE Trans. Inf. Theory 51(11), 3856–3871 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    O’Sullivan, M.: New codes for the Berlekamp-Massey-Sakata algorithm. Finite Fields Appl. 7(2), 293–317 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Saints, K., Heegard, C.: Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases. IEEE Trans. Inf. Theory 41(6), 1733–1751 (2002)CrossRefGoogle Scholar
  14. 14.
    Sakata, S.: Finding a minimal set of linear recurring relations capable of generating a given finite two-dimensional array. J. Symb. Comput. 5(3), 321–337 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sakata, S.: Extension of the Berlekamp-Massey algorithm to \(N\) dimensions. Inf. Comput. 84(2), 207–239 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sakata, S.: The BM algorithm and the BMS algorithm. In: Vardy, A. (ed.) Codes, Curves, and Signals: Common Threads in Communications. SECS, vol. 485, pp. 39–52. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4615-5121-8_4CrossRefGoogle Scholar
  17. 17.
    Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LMIB–School of Mathematics and Systems ScienceBeihang UniversityBeijingChina
  2. 2.Beijing Advanced Innovation Center for Big Data and Brain ComputingBeihang UniversityBeijingChina

Personalised recommendations