Advertisement

PAF Reconstruction with the Orbits Method

  • Ilias S. Kotsireas
  • Youtong Liu
  • Jing YangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

The maximal determinant problem for \(-1/{+1}\) matrices has been studied extensively and upper bounds for the determinant are known for various classes of matrices. These upper bounds are attained by specific kinds of combinatorial matrices and D-optimal matrices are one such case. One of the key issues in the search for D-optimal matrices is to reconstruct a \(-1/{+1}\) sequence of length n from a given sequence of periodic autocorrelation function (PAF) values. In turn, this is reduced to solving a quadratic system with \(\lfloor n/2\rfloor \) equations over \(\{-1,{+1}\}^n\). In this paper, a method for reconstructing a special class of \(-1/{+1}\) sequences is proposed by making use of some combinatorial properties of PAF values and the orbits method based on group actions. Furthermore, we apply additional filtering criteria to enhance the effectiveness of the method. Experiments show that the new approach can solve relatively large-scale problems and can help to generate solutions for many D-optimal problems.

Keywords

Periodic autocorrelation function D-optimal design Orbits method 

Notes

Acknowledgements

This work was made possible by the facilities of the CARGO Lab at Wilfrid Laurier University, and the SMS International as well as the Key Laboratory of Software Engineering (2018-18XJSY-03) at Guangxi University for Nationalities. ISK’s work is supported by NSERC grants. JY and YL’s work is supported by NSFC (No. 10801101), the Special Fund for Guangxi Bagui Scholars, Guangxi Science and Technology Program (AD18126010), and the Startup Foundation for Advanced Talents in Guangxi University for Nationalities (2015MDQD018).

References

  1. 1.
    Barba, G.: Intorno al teorema di hadamard sui determinanti a valore massimo. Giorn. Mat. Battaglini 71, 70–86 (1933)zbMATHGoogle Scholar
  2. 2.
    Craigen, R., Kharaghani, H.: Hadamard matrices and hadamard designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, Discrete Mathematics and its Applications (Boca Raton), 2nd edn. pp. 273–280. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  3. 3.
    Ehlich, H.: Determinantenabsschätzungen für binäre matrizen. Math. Z. 83, 123–132 (1964)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ehlich, H.: Determinantenabsschätzungen für binäre matrizen mit n3 mod 4. Math. Z. 84, 438–447 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gysin, M.: Combinatorial Designs, Sequences and Cryptography. Ph.D. thesis, University of Wollongong (1997)Google Scholar
  6. 6.
    Gysin, M.: New D-optimal designs via cyclotomy and generalised cyclotomy. Australas. J. Comb. 15, 247–256 (1997)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gysin, M., Seberry, J.: An experimental search and new combinatorial designs via a generalisation of cyclotomy. J. Comb. Math. Comb. Comput. 27, 143–160 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hadamard, J.: Résolution dùne question relative aux déterminants. Bulletin des Sciences Mathématiques 17, 240–246 (1893)zbMATHGoogle Scholar
  9. 9.
    Kotsireas, I., Pardalos, P.: D-optimal matrices via quadratic integer optimization. J. Heuristics 19, 617–627 (2013)CrossRefGoogle Scholar
  10. 10.
    Kotsireas, I.S., Yang, J.: Autocorrelation via runs. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI), vol. 11110, pp. 195–205. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99957-9_13CrossRefGoogle Scholar
  11. 11.
    Kreher, D.L., Stinson, D.R.: Combinatorial Algorithms, Generation, Enumeration and Search (CAGES), 1st edn. CRC Press, Boca Raton (1999)zbMATHGoogle Scholar
  12. 12.
    Mertens, S.: Exhaustive search for low-autocorrelation binary sequences. J. Phys. A: Math. Gen. 29(18), 473–481 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Đoković, D.: On maximal \((1,-1)\)-matrices of order \(2n\), \(n\) odd. Rad. Mat. 7(2), 371–378 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Đoković, D.: Some new D-optimal designs. Australas. J. Comb. 15, 221–231 (1997)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Đoković, D., Kotsireas, I.S.: D-optimal matrices of orders 118, 138, 150, 154 and 174. In: Colbourn, C.J. (ed.) Algebraic Design Theory and Hadamard Matrices, vol. 133, pp. 71–82. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17729-8_6CrossRefzbMATHGoogle Scholar
  16. 16.
    Đoković, D., Kotsireas, I.: New results on D-optimal matrices. J. Comb. Des. 20, 278–289 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Wojtas, M.: On Hadamard’s inequality for the determinants of order non-divisible by 4. Colloq. Math. 712, 73–83 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Wilfrid Laurier UniversityWaterlooCanada
  2. 2.SMS-HCICGuangxi University for NationalitiesNanningPeople’s Republic of China

Personalised recommendations