Advertisement

Parametric Standard Bases and Their Applications

  • Amir HashemiEmail author
  • Mahsa Kazemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11661)

Abstract

In this paper, by stating a local variant of stability criteria due to Kalkbrener [25] and based on the Kapur et al. algorithm [30] for computing comprehensive Gröbner systems, we present an algorithm for the computation of comprehensive standard systems. Although our algorithm is a straightforward extension of the mentioned algorithm, however the effectiveness of our approach can be seen in its applications. To this end, we study some applications of parametric standard bases in catastrophe and singularity theories as well as in automated geometric theorem discovery. In particular, in the last application, it is demonstrated that for a given geometric theorem (which is not always true), our algorithm is able to construct all possible conditions under which the geometric conclusion remains locally true.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful and constructive comments.

References

  1. 1.
    Bahloul, R.: Parametric standard basis, degree bound and local Hilbert-Samuel function. ArXiv:1004.0908, pp. 1–24 (2010)
  2. 2.
    Becker, T.: Standard bases in power series rings: uniqueness and superfluous critical pairs. J. Symb. Comput. 15(3), 251–265 (1993)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berkesch, C., Schreyer, F.-O.: Syzygies, finite length modules, and random curves. In: Commutative Algebra and Noncommutative Algebraic Geometry. Expository articles, vol. I, pp. 25–52. Cambridge University Press, Cambridge (2015)Google Scholar
  4. 4.
    Botana, F., Montes, A., Recio, T.: An algorithm for automatic discovery of algebraic loci. In: Proceeding of the ADG, pp. 53–59 (2012)Google Scholar
  5. 5.
    Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 3–21. Springer, Heidelberg (1979).  https://doi.org/10.1007/3-540-09519-5_52CrossRefGoogle Scholar
  6. 6.
    Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41, 3–4 (2006). Translation from the German, 475–511MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, X., Li, P., Lin, L., Wang, D.: Proving geometric theorems by partitioned-Parametric Gröbner bases. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 34–43. Springer, Heidelberg (2006).  https://doi.org/10.1007/11615798_3CrossRefGoogle Scholar
  8. 8.
    Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Company, Dordrecht (1988)zbMATHGoogle Scholar
  9. 9.
    Chou, S.-C., Schelter, W.F.: Proving geometry theorems with rewrite rules. J. Autom. Reasoning 2, 253–273 (1986)CrossRefGoogle Scholar
  10. 10.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decompostion. In: Caviness, B.F., Johnson, J.R. (eds.) GI-Fachtagung 1975. LNCS, pp. 85–121. Springer, Wien: (1998).  https://doi.org/10.1007/978-3-7091-9459-1_4CrossRefzbMATHGoogle Scholar
  11. 11.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-35651-8CrossRefzbMATHGoogle Scholar
  12. 12.
    Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005).  https://doi.org/10.1007/978-1-4757-6911-1CrossRefzbMATHGoogle Scholar
  13. 13.
    Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in elementary geometry. J. Autom. Reasoning 43(2), 203–236 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-1 – a computer algebra system for polynomial computations (2018). http://www.singular.uni-kl.de
  15. 15.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, Lille, France, July 07–10, 2002, pp. 75–83. ACM Press, New York (2002)Google Scholar
  17. 17.
    Gazor, M., Kazemi, M.: Singularity: a maple library for local zeros of scalar smooth maps (2016)Google Scholar
  18. 18.
    Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gelernter, H., Hanson, J. R., and Loveland, D. W.: Empirical explorations of the geometry-theorem proving machine. In: Proceeding of the West Joint Computer Conference (1960), pp. 143–147Google Scholar
  20. 20.
    Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and groups in bifurcation theory. vols. I, II. Springer-Verlag, New York, 1985, 1988Google Scholar
  21. 21.
    Gordan, P.: Les invariants des formes binaires. J. Math. 6(5), 141–156 (1900)zbMATHGoogle Scholar
  22. 22.
    Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15, 171–198 (1972)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Guglielmi, A.V.: Foreshocks and aftershocks of strong earthquakes in the light of catastrophe theory. Physics-Uspekhi 58(4), 384–397 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. Math. 79(2), 109–203, 205–326 (1964)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Symb. Comput. 24(1), 51–58 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2, 399–408 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kapur, D.: An approach for solving systems of parametric polynomial equations. In: Sarawat, V., Van Hentenryck, P. (eds.) Principles and Practice of Constraint Programming, pp. 217–224. MIT Press, Cambridge (1995)Google Scholar
  28. 28.
    Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the 35th International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, July 25–28, 2010, pp. 29–36. Association for Computing Machinery (ACM), New York (2010)Google Scholar
  29. 29.
    Kapur, D., Sun, Y., and Wang, D.: Computing comprehensive Gröbner systems and comprehensive Gröbner bases simultaneously. In: Proceedings of the 36th international symposium on symbolic and algebraic computation, ISSAC 2011, San Jose, CA, USA, June 7–11, 2011, pp. 193–200. Association for Computing Machinery (ACM), New York (2011)Google Scholar
  30. 30.
    Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49, 27–44 (2013)CrossRefGoogle Scholar
  31. 31.
    Kapur, D., Sun, Y., Wang, D.: An efficient method for computing comprehensive Gröbner bases. J. Symb. Comput. 52, 124–142 (2013)CrossRefGoogle Scholar
  32. 32.
    Kutzler, B., Stifter, S.: On the application of Buchberger’s algorithm to automated geometry theorem proving. J. Symb. Comput. 2, 389–397 (1986)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983).  https://doi.org/10.1007/3-540-12868-9_99CrossRefGoogle Scholar
  34. 34.
    Manubens, M., Montes, A.: Improving the DISPGB algorithm using the discriminant ideal. J. Symb. Comput. 41(11), 1245–1263 (2006)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Manubens, M., Montes, A.: Minimal canonical comprehensive Gröbner systems. J. Symb. Comput. 44(5), 463–478 (2009)CrossRefGoogle Scholar
  36. 36.
    Marais, M.S., Steenpaß, A.: The classification of real singularities using Singular. I: Splitting lemma and simple singularities. J. Symb. Comput. 68, 61–71 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Milnor, J.W.: Singular Points of Complex Hypersurfaces, vol. 61. Princeton University Press, Princeton (1968)zbMATHGoogle Scholar
  38. 38.
    Möller, H.M.: On the construction of Gröbner bases using syzygies. J. Symb. Comput. 6(2–3), 345–359 (1988)CrossRefGoogle Scholar
  39. 39.
    Möller, H. M., Mora, T., Traverso, C.: Gröbner bases computation using syzygies, pp. 320–328. In: Proceedings of ISSAC 1992. ACM Press, Baltimore (1992)Google Scholar
  40. 40.
    Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33(2), 183–208 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal canonical comprehensive Gröbner systems. In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 113–138. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77356-6_8CrossRefzbMATHGoogle Scholar
  42. 42.
    Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45(12), 1391–1425 (2010)CrossRefGoogle Scholar
  43. 43.
    Seidenberg, A.: A new decision method for elementary algebra. Ann. Math. 60(2), 365–374 (1954)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Sit, W.Y.: An algorithm for solving parametric linear systems. J. Symb. Comput. 13(4), 353–394 (1992)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Stewart, I.: Applications of catastrophe theory to the physical sciences. Phys. D 2(2), 245–305 (1981)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ISSAC 2006, Genova, Italy, July 9–12, 2006, pp. 326–331. ACM Press, New York (2006)Google Scholar
  47. 47.
    Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 24–84. Springer, Wien (1998).  https://doi.org/10.1007/978-3-7091-9459-1_3CrossRefGoogle Scholar
  48. 48.
    Thom, R.: Structural stability and morphogenesis: an outline of a general theory of models. Transl. from the French edition, as updated by the author Fowler, D.H. (ed.) Reprint from the 2nd Engl. ed. Addison-Wesley Publishing Company Inc, Redwood City (1989)Google Scholar
  49. 49.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comput. 14(1), 1–29 (1992)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Weispfenning, V.: Canonical comprehensive Gröbner bases. J. Symb. Comput. 36(3–4), 669–683 (2003)CrossRefGoogle Scholar
  51. 51.
    Winkler, F.: Gröbner bases in geometry theorem proving and simplest degeneracy conditions. Math. Pannonica 1(1), 15–32 (1990)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zhou, J., Wang, D., Sun, Y.: Automated reducible geometric theorem proving and discovery by Gröbner basis method. J. Autom. Reasoning 59(3), 331–344 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIsfahan University of TechnologyIsfahanIran

Personalised recommendations