Advertisement

Other Methods of Measuring the Spin Exchange Rates

  • Kev M. Salikhov
Chapter

Abstract

The modern theory of the manifestation of the saturation effect in the EPR spectra is described in detail. The theory predicts the formation of the coupled states of the microwave field and the spin system (spin polaritons) under the conditions of the manifestation of the saturation effect. It is shown that in strong microwave fields the frequency of polaritons and the condition of exchange narrowing depend on the amplitude of the microwave field.

The potential of double electron-electron resonance, electron spin echo, and the saturation-recovery method are briefly described. The effect of spin exchange on the saturation factor, which affects the magnitude of the effect of the dynamic polarization of nuclei, is examined in more detail. All these methods can complement each other well when studying spin exchange.

References

  1. 1.
    Bloembergen, N., Purcell, E.M., Pound, R.V.: Relaxation effects in nuclear magnetic absorption. Phys. Rev. 73, 679–712 (1948)ADSCrossRefGoogle Scholar
  2. 2.
    Portis, A.M.: Electronic structure of F centers: saturation of the electron spin resonance. Phys. Rev. 91, 1071–1078 (1953)ADSCrossRefGoogle Scholar
  3. 3.
    Castner, T.G.: Saturation of the paramagnetic resonance of a V center. Phys. Rev. 115, 1506–1515 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    Bloembergen, N., Shapiro, S., Pershan, I.S., Artiiani, J.O.: Cross-relaxation in spin systems. Phys. Rev. 114, 445–459 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    Abragam, A.: The principles of nuclear magnetism. Clarendon Press, Oxford (1961)Google Scholar
  6. 6.
    Wolf, E.L.: Diffusion effects in the inhomogeneously broadened case: high-temperature saturation of the F-center electron spin resonance. Phys. Rev. 142, 555–569 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    Freed, J.H.: Theory of saturation and double-resonance effects in ESR spectra. J. Chem. Phys. 43, 2312–2332 (1965)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Freed, J.H.: Theory of saturation and double resonance effects in electron spin resonance spectra 2. Exchange vs dipolar mechanisms. J. Phys. Chem. 71, 38–51 (1967)CrossRefGoogle Scholar
  9. 9.
    Bloembergen, N., Wang, S.: Relaxation effects in para- and ferromagnetic resonance. Phys. Rev. 93, 72 (1954)ADSCrossRefGoogle Scholar
  10. 10.
    Abragam, A., Bleaney, B.: Electron paramagnetic resonance on transitions ions. Clarendon Press, Oxford (1970)Google Scholar
  11. 11.
    Kivelson, D.J.: Theory of ESR line widths of free radicals. J. Chem. Phys. 33, 1094–1106 (1960)ADSCrossRefGoogle Scholar
  12. 12.
    Currin, J.D.: Theory of exchange relaxation of hyperfine structure in electron spin resonance. Phys. Rev. 126, 1995–2001 (1962)ADSCrossRefGoogle Scholar
  13. 13.
    Zamaraev, К.I., Molin, Y.N., Salikhov, К.М.: Spin exchange, p. 317. Nauka, Sibirian branch, Novosibirsk (1977)Google Scholar
  14. 14.
    Molin, Y.N., Salikhov, K.M., Zamaraev, K.I., Exchange, S.: Principles and applications in chemistry and biology. Springer, Berlin/Heidelberg/NY (1980)Google Scholar
  15. 15.
    Lebedev, Y.S., Dobryakov, S.N.: Analysis of the EPR spectra of free radicals. Zhur. Structur. Khim. 8, 838–853 (1967). in RussianGoogle Scholar
  16. 16.
    Milov, A.D., Salikhov, K.M., Tsvetkov, Y.D.: Spin diffusion and kinetics of spin-lattice relaxation of hydrogen atoms in glass-like matrices at 77K. Fizikatverdogotela. 14, 2259–2264 (1972)Google Scholar
  17. 17.
    Salikhov, К.М., Semenov, A.G., Tsvetkov, Y.D.: Electron spin echo and its application, p. 342. Nauka, Sibirianbranch, Novosibirsk (1976)Google Scholar
  18. 18.
    Salikhov, K.M., Tsvetkov, Y.D.: Spin-spin interactions in solids as studied using electron spin echo method. In: Kevan, L., Schwartz, R. (eds.) Time-domain ESR spectroscopy. Wiley, New York (1979)Google Scholar
  19. 19.
    Salikhov, K.M., Bakirov, M.M., Galeev, R.T.: Detailed analysis of manifestations of the spin coherence transfer in EPR spectra of 14N nitroxide free radicals in non-viscous liquids. Appl. Magn. Reson. 47, 1095–1122 (2016)CrossRefGoogle Scholar
  20. 20.
    Salikhov, K.M.: Consistent paradigm of the spectra decomposition into independent resonance lines. Appl. Magn. Reson. 47, 1207–1228 (2016)CrossRefGoogle Scholar
  21. 21.
    Bales, B.L., Bakirov, M.M., Galeev, R.T., Kirilyuk, I.A., Kokorin, A.I., Salikhov, K.M.: Тhe current state of measuring bimolecular spin exchange rates by the EPR spectral manifestations of the exchange and dipole-dipole interactions in dilute solutions of nitroxide free radicals with proton hyperfine structure. Appl. Magn. Reson. 48, 1399–1447 (2017)CrossRefGoogle Scholar
  22. 22.
    Bales, B.L.: Berliner, L.J., Reuben, J. (eds.) Biological magnetic resonance, vol. 8, pp. 77–130. Plenum Publishing Corporation, New York (1989)Google Scholar
  23. 23.
    Eastman, M.P., Kooser, R.G., Das, M.P., Freed, J.H.: Studies of Heisenberg spin exchange in ESR spectra 1. Linewidth and saturation effects. J. Chem. Phys. 51, 2690–2709 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    Freed, J.H., Fraenkel, G.K.: Theory of linewidths in electron spin resonance spectra. J. Chem. Phys. 39, 326–348 (1963)ADSCrossRefGoogle Scholar
  25. 25.
    Salikhov, K.M.: Peculiar features of the spectrum saturation effect when the spectral diffusion operates: system with two frequencies. Appl. Magn. Reson. 49, 1417–1430 (2018)CrossRefGoogle Scholar
  26. 26.
    Salikhov, К.М., Khairuzhdinov, I.T.: Theoretical investigation of the effect of saturation of the EPR spectrum taking into account spectral diffusion in a system with a Gaussian distribution of the resonance frequencies of spins. ZhETP. 155, 806–823 (2019)Google Scholar
  27. 27.
    Bakirov, M.M., Salikhov, K.M., Peric, M., Schwartz, R.N., Bales, B.L., Simple, A.: Accurate method to determine the effective value of the magnetic induction of the microwave field from the continuous saturation of EPR spectra of Fremy’s Salt solutions. Representative values of T1. Appl. Magn. Reson. 50, 919–942 (2019)CrossRefGoogle Scholar
  28. 28.
    Salikhov, K.M.: Contributions of exchange and dipole–dipole interactions to the shape of EPR spectra of free radicals in diluted solutions. Appl. Magn. Reson. 38, 237–256 (2010)CrossRefGoogle Scholar
  29. 29.
    Bloch, F., Siegert, A.: Magnetic resonance for nonrotating fields. Phys. Rev. 57, 522–527 (1940)ADSCrossRefGoogle Scholar
  30. 30.
    Dalibard, J., Cohen-Tannoudji, C.: Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B. 2, 1707–1720 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    Hyde, J.S., Chien, J.C.W., Freed, J.Y.: Electron-electron double resonance of free radicals in solution. J. Chem. Phys. 48, 4211–4225 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    Huisjen, M., Hyde, J.S.: Saturation recoverymeasurements of electron spin-lattice relaxation times of free radicals in solution. J. Chem. Phys. 60, 1682 (1974)ADSCrossRefGoogle Scholar
  33. 33.
    Stunzhas, P.A., Bendersky, V.A., Blumenfeld, L.A., Sokolov, Y.A.: Double electron –electron resonance of triplet excitons I. Opt. Spectrosc. XXVIII, 278–283 (1970)Google Scholar
  34. 34.
    Stunzhas, P.A., Bendersky, V.A.: DEER for two frequencies spectrum considering spin exchange with sudden collisions model. Opt. Spectrosc. 30, 1041–1046 (1971)Google Scholar
  35. 35.
    Braendle, R., Krueger, G.J., Mueller-Warmuth, W.: Impulsspektroskopischeuntersuchungen der Elektronenspinrelaxation in freienRadikalen. Z. Naturforsch. 25a, 1 (1970)ADSGoogle Scholar
  36. 36.
    Schweiger, A., Jeschke, G.: Principles of pulse electron paramagnetic resonance. Oxford university press, Oxford (2001)Google Scholar
  37. 37.
    Biller, J.R., McPeak, J.E., Eaton, S.S., Eaton, G.R.: Measurement of T1e, T1N, T1HE, T2e and T2H by pulse EPR at X-band fornitroxides at concentrations relevant to solution DNP. Appl. Magn. Reson. 49, 1235–1251 (2018)CrossRefGoogle Scholar
  38. 38.
    Mims, W.B.: Phase memory in electron spin echoes, lattice relaxation effects in CaWO4: Er, Ce, Mn. Phys. Rev. 168, 370–389 (1968)ADSCrossRefGoogle Scholar
  39. 39.
    Milov, A.D., Salikhov, K.M., Tsvetkov, Y.D.: Electron spin echo studies of magnetic relaxation in liquids: solutions of 2, 4, 6-tri-t-butylphenoxyl. Chem.Phys. Lett. 8, 523–526 (1971)ADSCrossRefGoogle Scholar
  40. 40.
    Zhidomirov, G.M., Salikhov, K.M.: On the theory of spectral diffusion in magnetically diluted solids. Zhur. Experim. Teoret. Fiz. 56, 1933–1939 (1969)Google Scholar
  41. 41.
    Salikhov, K.M., Dzuba, S.A., Raitsimring, A.M.: The theory of electron spin echo signal decay resulting from dipole-dipole interactions between paramagnetic centers in solids. J. Magn. Reson. 42, 255–276 (1981)ADSGoogle Scholar
  42. 42.
    Salikhov, K.M., Khairuzhdinov, I.T., Zaripov, R.B.: Three pulse ELDOR theory revisited. Appl. Magn. Reson. 45, 573–619 (2014)CrossRefGoogle Scholar
  43. 43.
    Salikhov, K.M., Khairuzhdinov, I.T.: Four-pulse ELDOR theory of the spin ½ label pairs extended to overlapping EPR spectra and to overlapping pump and observer excitation bands. Appl. Magn. Reson. 46(57–83), (2015)CrossRefGoogle Scholar
  44. 44.
    Schwartz, R.N., Jones, L.L., Bowman, M.K.: Electron spin echo studies of nitroxide free radicals in liquids. J. Phys. Chem. 83, 3429–3434 (1979)CrossRefGoogle Scholar
  45. 45.
    Stillman, A.E., Schwartz, R.N.: Study of dynamical processes in liquids by electron spin echo spectroskopy. J. Phys. Chem. 85, 3031–3040 (1981)CrossRefGoogle Scholar
  46. 46.
    Collauto, A., Barbon, A., Brustolon, M.: First determination of the spin relaxation properties of a nitronyl nitroxide in solution by electron spin echoes at X band: a comparison with tempone. J. Magn. Res. 223, 180–185 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Overhauser, A.: Psrsmagnetic relaxation in metals. Phys. Rev. 89, 689–699 (1953)ADSzbMATHCrossRefGoogle Scholar
  48. 48.
    Overhauser, A.: Polarization of nuclei in metals. Phys. Rev. 92, 411 (1953)ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    Solomon, I.: Relaxation processes in a system of two spins. Phys.Rev. 99, 559–565 (1955)ADSCrossRefGoogle Scholar
  50. 50.
    Bates, R.D., Drozdoski, W.S.: Use of nitroxide spin labels in studies of solvent-solute interactions. J. Chem. Phys. 67, 4038 (1977)ADSCrossRefGoogle Scholar
  51. 51.
    Armstrong, B.D., Han, S.: A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals. J. Chem. Phys. 127, 104508-(1-10) (2007)ADSCrossRefGoogle Scholar
  52. 52.
    Prandolini, M.J., Denysenko, V.P., Gafurov, M., Lyubenova, S., Endeward, B., Bennati, M., Prisner, T.E.: First DNP results from a liquid water-tempol sample at 400 Mhz and 260 GHz. Appl. Magn. Reson. 34, 399–407 (2008)CrossRefGoogle Scholar
  53. 53.
    Sezer, D., Gafurov, M., Prandolini, M.J., Denysenkov, V.P., Prisner, T.F.: Dynamic nuclear polarization of water by a nitroxide radical: rigorous treatment of the electron spin saturation and comparison with experiments at 9.2 Tesla. Phys. Chem. Chem. Phys. 11, 6638–6653 (2009)CrossRefGoogle Scholar
  54. 54.
    Tuerke, M.T., Bennati, M.: Comparison of Overhauser DNP at 0.34 and 3.4 T with Fremy’s salt. Appl. Magn. Reson. 43, 129–138 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kev M. Salikhov
    • 1
  1. 1.Zavoisky Physical-Technical Institute of Russian Academy of SciencesKazanRussia

Personalised recommendations