Advertisement

Network Visualization

  • Ulrik BrandesEmail author
  • Michael Sedlmair
Chapter

Abstract

Data visualization is the art and science of mapping data to graphical variables. In this context, networks give rise to unique difficulties because of inherent dependencies among their elements. We provide a high-level overview of the main challenges and common techniques to address them. They are illustrated with examples from two application domains, social networks and automotive engineering. The chapter concludes with opportunities for future work in network visualization.

References

  1. Abello, J. & van Ham, F. (2004), Matrix zoom: A visual interface to semi-external graphs, in Ward & Munzner, pp. 183–190. https://doi.org/10.1109/INFVIS.2004.46
  2. Bae, J. & Watson, B. (2011), ‘Developing and evaluating quilts for the depiction of large layered graphs’, IEEE Trans. Vis. Comput. Graph.17(12), 2268–2275. https://doi.org/10.1109/TVCG.2011.187
  3. Behrisch, M., Bach, B., Riche, N. H., Schreck, T. & Fekete, J. (2016), ‘Matrix reordering methods for table and network visualization’, Comput. Graph. Forum35(3), 693–716. https://doi.org/10.1111/cgf.12935
  4. Bertin, J. (1983), Semiology of Graphics: Diagrams, Networks, Maps, University of Wisconsin Press, Madison, WI.Google Scholar
  5. Boettger, J., Brandes, U., Deussen, O. & Ziezold, H. (2008), ‘Map warping for the annotation of metro maps’, Computer Graphics and Applications28(5), 56–65.CrossRefGoogle Scholar
  6. Borgatti, S. P., Everett, M. G. & Johnson, J. C. (2018), Analyzing Social Networks, 2nd edn, Sage.Google Scholar
  7. Brandes, U. & Pich, C. (2006), Eigensolver methods for progressive multidimensional scaling of large data, in M. Kaufmann & D. Wagner, eds, ‘Graph Drawing, 14th International Symposium, GD 2006, Karlsruhe, Germany, September 18-20, 2006. Revised Papers’, Vol. 4372 of Lecture Notes in Computer Science, Springer, pp. 42–53. https://doi.org/10.1007/978-3-540-70904-6_6
  8. Brandes, U. & Pich, C. (2008), An experimental study on distance-based graph drawing, in I. G. Tollis & M. Patrignani, eds, ‘Graph Drawing, 16th International Symposium, GD 2008, Heraklion, Crete, Greece, September 21–24, 2008. Revised Papers’, Vol. 5417 of Lecture Notes in Computer Science, Springer, pp. 218–229. https://doi.org/10.1007/978-3-642-00219-9_21
  9. Brandes, U. (2016), Force-directed graph drawing, in M.-Y. Kao, ed., ‘Encyclopedia of Algorithms’, Springer, pp. 768–773. https://doi.org/10.1007/978-1-4939-2864-4_648
  10. Brandes, U., Freeman, L. C. & Wagner, D. (2013), Social networks, in Tamassia, pp. 805–839.Google Scholar
  11. Brandes, U., Indlekofer, N. & Mader, M. (2012), ‘Visualization methods for longitudinal social networks and stochastic actor-oriented modeling’, Social Networks34(3), 291–308. https://doi.org/10.1016/j.socnet.2011.06.002
  12. Brandes, U., Lerner, J., Lubbers, M. J., McCarty, C. & Molina, J. L. (2008), Visual statistics for collections of clustered graphs, in ‘IEEE Pacific Visualization Symposium’, pp. 47–54.Google Scholar
  13. Brandes, U. & Nick, B. (2011), ‘Asymmetric relations in longitudinal social networks’, IEEE Transactions on Visualization and Computer Graphics17(12), 2283–2290.CrossRefGoogle Scholar
  14. Díaz, J., Petit, J. & Serna, M. J. (2002), ‘A survey of graph layout problems’, ACM Comput. Surv.34(3), 313–356. http://doi.acm.org/10.1145/568522.568523
  15. Dinkla, K., Westenberg, M. A. & van Wijk, J. J. (2012), ‘Compressed adjacency matrices: Untangling gene regulatory networks’, IEEE Trans. Vis. Comput. Graph.18(12), 2457–2466. https://doi.org/10.1109/TVCG.2012.208
  16. Dwyer, T. (2009), ‘Scalable, versatile and simple constrained graph layout’, Computer Graphics Forum28(3), 991–998.CrossRefGoogle Scholar
  17. Elmqvist, N., Riche, Y., Riche, N. H. & Fekete, J. (2010), ‘Melange: Space folding for visual exploration’, IEEE Trans. Vis. Comput. Graph.16(3), 468–483. https://doi.org/10.1109/TVCG.2009.86
  18. Gajer, P. & Kobourov, S. G. (2002), ‘GRIP: graph drawing with intelligent placement’, J. Graph Algorithms Appl.6(3), 203–224.MathSciNetCrossRefGoogle Scholar
  19. Gansner, E. R., Hu, Y., North, S. C. & Scheidegger, C. E. (2011), Multilevel agglomerative edge bundling for visualizing large graphs, in G. D. Battista, J. Fekete & H. Qu, eds, ‘IEEE Pacific Visualization Symposium, PacificVis 2011, Hong Kong, China, 1–4 March, 2011’, IEEE Computer Society, pp. 187–194. https://doi.org/10.1109/PACIFICVIS.2011.5742389
  20. Gansner, E. R., Koren, Y. & North, S. C. (2004), Graph drawing by stress majorization, in Pach, pp. 239–250. https://doi.org/10.1007/978-3-540-31843-9_25
  21. Ghoniem, M., Fekete, J. & Castagliola, P. (2004), A comparison of the readability of graphs using node-link and matrix-based representations, in Ward & Munzner (2004), pp. 17–24. https://doi.org/10.1109/INFVIS.2004.1
  22. Grant, R. (2018), Data Visualization: Charts, Maps, and Interactive Graphics, CRC Press.Google Scholar
  23. Hachul, S. & Jünger, M. (2004), Drawing large graphs with a potential-field-based multilevel algorithm, in Pach, pp. 285–295. https://doi.org/10.1007/978-3-540-31843-9_29
  24. Hennig, M., Brandes, U., Pfeffer, J. & Mergel, I. (2012), Studying Social Networks – A Guide to Empirical Research, Campus.Google Scholar
  25. Henry, N. & Fekete, J. (2007), Matlink: Enhanced matrix visualization for analyzing social networks, in M. C. C. Baranauskas, P. A. Palanque, J. Abascal & S. D. J. Barbosa, eds, ‘Human-Computer Interaction—INTERACT 2007, 11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, September 10–14, 2007, Proceedings, Part II’, Vol. 4663 of Lecture Notes in Computer Science, Springer, pp. 288–302. https://doi.org/10.1007/978-3-540-74800-7_24
  26. Henry, N., Fekete, J. & McGuffin, M. J. (2007), ‘Nodetrix: a hybrid visualization of social networks’, IEEE Trans. Vis. Comput. Graph.13(6), 1302–1309. https://doi.org/10.1109/TVCG.2007.70582
  27. Holten, D. (2006), ‘Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data’, IEEE Trans. Vis. Comput. Graph.12(5), 741–748. https://doi.org/10.1109/TVCG.2006.147
  28. Hu, Y. (2006), ‘Efficient, high-quality force-directed graph drawing’, The Mathematica Journal10(1), 37–71.Google Scholar
  29. Kerren, A., Purchase, H. C. & Ward, M. O., eds (2014), Multivariate Network Visualization—Dagstuhl Seminar #13201, Dagstuhl Castle, Germany, May 12–17, 2013, Revised Discussions, Vol. 8380 of Lecture Notes in Computer Science, Springer. https://doi.org/10.1007/978-3-319-06793-3
  30. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y. & Porter, M. A. (2014), ‘Multilayer networks’, J. Complex Networks2(3), 203–271. https://doi.org/10.1093/comnet/cnu016
  31. Kobourov, S. G. (2013), Force-directed drawing algorithms, in Tamassia, pp. 383–408.Google Scholar
  32. Kruja, E., Marks, J., Blair, A. and Waters, R. C. (2001), A short note on the history of graph drawing, in P. Mutzel, M. Jünger & S. Leipert, eds, ‘Graph Drawing, 9th International Symposium, GD 2001 Vienna, Austria, September 23–26, 2001, Revised Papers’, Vol. 2265 of Lecture Notes in Computer Science, Springer, pp. 272–286. https://doi.org/10.1007/3-540-45848-4_22
  33. Lietz, H., Wagner, C., Bleier, A. & Strohmaier, M. (2014), When politicians talk: Assessing online conversational practices of political parties on twitter, in ‘Proceedings of the Eighth International Conference on Weblogs and Social Media, ICWSM 2014.’, pp. 285–294. http://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/view/8069
  34. Maaten, L. v. d. & Hinton, G. (2008), ‘Visualizing data using t-SNE’, Journal of machine learning research9(Nov), 2579–2605.Google Scholar
  35. McGrath, C., Blythe, J. & Krackhardt, D. (1996), ‘Seeing groups in graph layouts’, Connections19(2), 22–29.Google Scholar
  36. Munzner, T. (2014), Visualization Analysis and Design, AK Peters/CRC Press.Google Scholar
  37. Newcomb, T. M. (1961), The Acquaintance Process, Holt, Rinehart, and Winston, New York, NY.Google Scholar
  38. Nocaj, A., Ortmann, M. & Brandes, U. (2015), ‘Untangling the hairballs of multi-centered, small-world online social media networks’, J. Graph Algorithms Appl.19(2), 595–618. https://doi.org/10.7155/jgaa.00370
  39. Ortmann, M., Klimenta, M. & Brandes, U. (2017), ‘A sparse stress model’, J. Graph Algorithms Appl.21(5), 791–821. https://doi.org/10.7155/jgaa.00440
  40. Perry, B. L., Pescosolido, B. A. & Borgatti, S. P. (2018), Egocentric Network Analysis, Cambridge University Press.Google Scholar
  41. Purchase, H. C. (2000), ‘Effective information visualisation: a study of graph drawing aesthetics and algorithms’, Interacting with Computers13(2), 147–162. https://doi.org/10.1016/S0953-5438(00)00032-1
  42. Roberts, M. J. (2012), Underground Maps Unravelled, Self-published, Wivenhoe, UK.Google Scholar
  43. Roweis, S. T. & Saul, L. K. (2000), ‘Nonlinear dimensionality reduction by locally linear embedding’, Science290(5500), 2323–2326.CrossRefGoogle Scholar
  44. Sedlmair, M., Frank, A., Munzner, T. & Butz, A. (2012), ‘RelEx: Visualization for actively changing overlay network specifications’, IEEE transactions on visualization and computer graphics18(12), 2729–2738.CrossRefGoogle Scholar
  45. Shen, Z. & Ma, K. (2007), Path visualization for adjacency matrices, in K. Museth, T. Möller & A. Ynnerman, eds, ‘EuroVis07: Joint Eurographics—IEEE VGTC Symposium on Visualization, Norrköping, Sweden, 23–25 May 2007’, Eurographics Association, pp. 83–90. https://doi.org/10.2312/VisSym/EuroVis07/083-090
  46. Tamassia, R., ed. (2013), Handbook on Graph Drawing and Visualization, Chapman and Hall/CRC.Google Scholar
  47. Tufte, E. R. (1983), The Visual Display of Quantitative Information, Graphics Press, Cheshire, CT.Google Scholar
  48. van Garderen, M., Pampel, B., Nocaj, A. & Brandes, U. (2017), ‘Minimum-displacement overlap removal for geo-referenced data visualization’, Computer Graphics Forum36(3), 423–433. https://doi.org/10.1111/cgf.13199
  49. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J. & Fellner, D. W. (2010), Visual analysis of large graphs, in H. Hauser & E. Reinhard, eds, ‘Eurographics 2010—State of the Art Reports, Norrköping, Sweden, May 3–7, 2010’, Eurographics Association, pp. 37–60. https://doi.org/10.2312/egst.20101061
  50. Wang, Y., Wang, Y., Sun, Y., Zhu, L., Lu, K., Fu, C.-W., Sedlmair, M., Deussen, O. & Chen, B. (2018), ‘Revisiting stress majorization as a unified framework for interactive constrained graph visualization’, IEEE transactions on visualization and computer graphics24(1), 489–499.CrossRefGoogle Scholar
  51. Ware, C., Purchase, H. C., Colpoys, L. & McGill, M. (2002), ‘Cognitive measurements of graph aesthetics’, Information Visualization1(2), 103–110. https://doi.org/10.1057/palgrave.ivs.9500013
  52. Wattenberg, M. (2006), Visual exploration of multivariate graphs, in ‘Proceedings of the SIGCHI conference on Human Factors in computing systems’, ACM, pp. 811–819.Google Scholar
  53. Zinsmaier, M., Brandes, U., Deussen, O. & Strobelt, H. (2012), ‘Interactive level-of-detail rendering of large graphs’, IEEE Trans. Vis. Comput. Graph.18(12), 2486–2495. https://doi.org/10.1109/TVCG.2012.238

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Humanities, Social and Political SciencesETH ZurichZurichSwitzerland
  2. 2.Department of Computer ScienceUniversity of StuttgartStuttgartGermany

Personalised recommendations