Ferroptosis in Cancer Therapy

  • Xiao Zhang
  • Susu Guo
  • Yueyue Yang
  • Xiangfei Xue
  • Jiayi Wang


Ferroptosis, firstly demonstrated in 2012, is a type of iron- and lipid hydroperoxides-dependent regulated cell death. This newly recognized cell death morphologically, biochemically and genetically distinct from other types of cell death including apoptosis, necrosis, pyroptosis and autophagy. A series of strategies have been developed to induce ferroptosis to eliminate cancer cells, including overexpression or knockdown of ferroptosis-related genes, use of clinical drugs, chemical compounds, and iron-containing nanomaterials. A large number of studies have raised that ferroptosis might be a new option for clinical cancer therapy. However, it still exists long distance between the findings in the laboratory and the effective use in clinical cancer treatment using ferroptosis. Here, we introduced the main mechanism of ferroptosis and how potential ferrotposis is inhibited in different cancer types, and summarized the gene targets (GPX4, SLC7A11, ACSL4, CARS, SAT1, DPP4, NRF2, CD44v, CISD1, HSPB1), drug inducers (erastin and its analogs, RSL3 and its analogs, inhibitors of GSH synthesis, FINO2, statins, ART) and nanomaterial inducers (iron oxide nanoparticles, amorphous iron nanoparticles, iron–organic frameworks, iron-platinum nanoparticles and other indirect iron-based nanomaterials) for ferroptosis. With the advancement of ferroptosis theory, great progress in clinical cancer therapy might be achieved in the future.


  1. Abrams RP, Carroll WL, Woerpel KA (2016) Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol 11:1305–1312PubMedPubMedCentralGoogle Scholar
  2. Alvarez SW et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643PubMedPubMedCentralCrossRefGoogle Scholar
  3. Baer MR, Augustinos P, Kinniburgh AJ (1992) Defective c-myc and c-myb RNA turnover in acute myeloid leukemia cells. Blood 79:1319–1326PubMedGoogle Scholar
  4. Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376PubMedGoogle Scholar
  5. Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303Google Scholar
  6. Bruix J et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen Y, Zhang Z, Yang K, Du J, Xu Y, Liu S (2015) Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress. Oncogene 34:3839–3847PubMedCrossRefGoogle Scholar
  8. Cheng Z, Li Y (2007) What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 107:748–766PubMedCrossRefGoogle Scholar
  9. Cramer SL et al (2017) Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 23:120–127CrossRefGoogle Scholar
  10. DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109PubMedPubMedCentralCrossRefGoogle Scholar
  11. Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072PubMedPubMedCentralCrossRefGoogle Scholar
  12. Doll S et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98CrossRefGoogle Scholar
  13. Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296CrossRefGoogle Scholar
  14. Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:517–532PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U (2013) Mammalian Trit1 is a tRNA([Ser]Sec)-isopentenyl transferase required for full selenoprotein expression. Biochem J 450:427–432PubMedCrossRefGoogle Scholar
  16. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308PubMedPubMedCentralCrossRefGoogle Scholar
  17. Gaschler MM et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507–515PubMedPubMedCentralCrossRefGoogle Scholar
  18. Geldenhuys WJ, Leeper TC, Carroll RT (2014) mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today 19:1601–1606PubMedCrossRefGoogle Scholar
  19. Guo J et al (2018) Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat 50:445–460CrossRefGoogle Scholar
  20. Hao S et al (2017) Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 19:1022–1032PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hasegawa M et al (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769PubMedCrossRefGoogle Scholar
  22. Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270–278CrossRefGoogle Scholar
  23. Houessinon A et al (2016) Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer 15:38PubMedPubMedCentralCrossRefGoogle Scholar
  24. Huo H, Zhou Z, Qin J, Liu W, Wang B, Gu Y (2016) Erastin disrupts mitochondrial permeability transition pore (mPTP) and induces apoptotic death of colorectal cancer cells. PLoS One 11:e0154605PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400CrossRefGoogle Scholar
  26. Jennis M et al (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jiang L et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62PubMedPubMedCentralCrossRefGoogle Scholar
  28. Joseph CA, Maroney MJ (2007) Cysteine dioxygenase: structure and mechanism. Chem Commun (Camb):3338–3349Google Scholar
  29. Kennedy D et al (2017) HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 8:e3026PubMedCrossRefGoogle Scholar
  30. Kim SE et al (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11:977–985PubMedPubMedCentralCrossRefGoogle Scholar
  31. Komatsu M et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223PubMedCrossRefGoogle Scholar
  32. Kwon MY, Park E, Lee SJ, Chung SW (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6:24393–24403PubMedPubMedCentralGoogle Scholar
  33. Lachaier E et al (2014) Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 34:6417–6422PubMedPubMedCentralGoogle Scholar
  34. Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR (2015) Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg Med Chem Lett 25:4787–4792PubMedPubMedCentralCrossRefGoogle Scholar
  35. Li WP, Su CH, Chang YC, Lin YJ, Yeh CS (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10:2017–2027PubMedCrossRefGoogle Scholar
  36. Lin CH et al (2016) Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J Psychiatr Res 72:58–63PubMedCrossRefGoogle Scholar
  37. Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602PubMedCrossRefGoogle Scholar
  38. Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ma P et al (2017) Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 17:928–937CrossRefGoogle Scholar
  40. Marengo B et al (2008) Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44:474–482PubMedCrossRefGoogle Scholar
  41. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113:E6806–E6812CrossRefGoogle Scholar
  42. Schott C, Graab U, Cuvelier N, Hahn H, Fulda S (2015) Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front Oncol 5:131PubMedPubMedCentralCrossRefGoogle Scholar
  43. Sehm T et al (2016) Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget 7:36021–36033PubMedPubMedCentralGoogle Scholar
  44. Shen J et al (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4:487–497PubMedPubMedCentralCrossRefGoogle Scholar
  45. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis. Adv Mater 30:e1704007PubMedPubMedCentralCrossRefGoogle Scholar
  46. Shimada K et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503PubMedPubMedCentralCrossRefGoogle Scholar
  47. Shitara K et al (2017) Dose-escalation study for the targeting of CD44v(+) cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer 20:341–349PubMedCrossRefGoogle Scholar
  48. Sindrilaru A et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997PubMedPubMedCentralCrossRefGoogle Scholar
  49. Skouta R et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556PubMedPubMedCentralCrossRefGoogle Scholar
  50. Sohn YS et al (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci USA 110:14676–14681PubMedCrossRefGoogle Scholar
  51. Stockwell BR et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285PubMedPubMedCentralCrossRefGoogle Scholar
  52. Su YL, Fang JH, Liao CY, Lin CT, Li YT, Hu SH (2015) Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics 5:1233–1248PubMedCrossRefGoogle Scholar
  53. Sun X et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625PubMedPubMedCentralCrossRefGoogle Scholar
  54. Sun X et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184CrossRefGoogle Scholar
  55. Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506PubMedCrossRefGoogle Scholar
  56. Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. characterization of the enzyme. J Biol Chem 244:6388–6394PubMedGoogle Scholar
  57. Viswanathan VS et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wang SJ, Ou Y, Jiang L, Gu W (2016a) Ferroptosis: a missing puzzle piece in the p53 blueprint? Mol Cell Oncol 3:e1046581CrossRefGoogle Scholar
  59. Wang Y et al (2016b) In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 6:272–286PubMedPubMedCentralCrossRefGoogle Scholar
  60. Weiwer M et al (2012) Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett 22:1822–1826CrossRefGoogle Scholar
  61. Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE (2007) MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci USA 104:5318–5323PubMedCrossRefGoogle Scholar
  62. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469PubMedCrossRefGoogle Scholar
  63. Wu FQ et al (2016) ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1alpha. J Hepatol 65:314–324PubMedCrossRefGoogle Scholar
  64. Xie Y et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704CrossRefGoogle Scholar
  65. Yagoda N et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868PubMedPubMedCentralCrossRefGoogle Scholar
  66. Yang WS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331PubMedPubMedCentralCrossRefGoogle Scholar
  67. Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003PubMedPubMedCentralCrossRefGoogle Scholar
  68. Yu Y et al (2015) The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2:e1054549PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yuan H, Li X, Zhang X, Kang R, Tang D (2016a) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478:838–844CrossRefGoogle Scholar
  70. Yuan H, Li X, Zhang X, Kang R, Tang D (2016b) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343CrossRefGoogle Scholar
  71. Yue L et al (2017) pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy. Bioconjug Chem 28:400–409PubMedCrossRefGoogle Scholar
  72. Zanganeh S et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986–994PubMedPubMedCentralCrossRefGoogle Scholar
  73. Zhang C et al (2016a) Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew Chem Int Ed Engl 55:2101–2106PubMedCrossRefGoogle Scholar
  74. Zhang P, Hu C, Ran W, Meng J, Yin Q, Li Y (2016b) Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6:948–968PubMedPubMedCentralCrossRefGoogle Scholar
  75. Zheng DW et al (2017) Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett 17:284–291CrossRefGoogle Scholar
  76. Zhou Z et al (2017) Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew Chem Int Ed Engl 56:6492–6496PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiao Zhang
    • 1
  • Susu Guo
    • 2
  • Yueyue Yang
    • 2
  • Xiangfei Xue
    • 3
  • Jiayi Wang
    • 1
  1. 1.Shanghai Institute of Thoracic Tumors, Shanghai Chest HospitalShanghai Jiaotong UniversityShanghaiChina
  2. 2.Department of Clinical Laboratory, Shanghai Tenth People’s HospitalTongji UniversityShanghaiChina
  3. 3.Faculty of Medical Laboratory ScienceShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations