Advertisement

Forecasting Water Levels of Catalan Reservoirs

  • Raúl ParadaEmail author
  • Jordi Font
  • Jordi Casas-Roma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11676)

Abstract

Reservoirs are largely natural or artificial lakes used as a source of water supply for society daily applications. However, reservoirs are limited natural resources which water levels vary according to annual rainfalls and other natural events. Therefore, prediction techniques are helpful to manage the water used more efficiently. This paper compares state-of-the-art methods to predict the water level in Catalan reservoirs comparing two approaches: using the water level uniquely, uni-variant, and adding meteorological data, multi-variant. With respect to relate works, our contribution includes a longer times series prediction keeping a high precision. The results return that combining Support Vector Machine and the multi-variant approach provides the highest precision with an \(R^2\) value of 0.99.

Keywords

Forecasting Reservoir Time series analysis 

References

  1. 1.
    Bao, Y., Xiong, T., Hu, Z.: Multi-step-ahead time series prediction usingmultiple-output support vector regression. Neurocomputing 129, 482–493 (2014).  https://doi.org/10.1016/j.neucom.2013.09.010. http://www.sciencedirect.com/science/article/pii/S092523121300917XCrossRefGoogle Scholar
  2. 2.
    Chang, F.J., Chang, Y.T.: Adaptive neuro-fuzzy inference system for predictionof water level in reservoir. Adv. Water Resour. 29(1), 1–10 (2006).  https://doi.org/10.1016/j.advwatres.2005.04.015. http://www.sciencedirect.com/science/article/pii/S0309170805001338CrossRefGoogle Scholar
  3. 3.
    Chaves, P., Kojiri, T.: Deriving reservoir operational strategies considering water quantity and quality objectives by stochastic fuzzy neural networks. Adv. Water Resour. 30(5), 1329–1341 (2007).  https://doi.org/10.1016/j.advwatres.2006.11.011. http://www.sciencedirect.com/science/article/pii/S0309170806002168CrossRefGoogle Scholar
  4. 4.
    Doan, E., Kocamaz, U.E., Utkucu, M., Yldrm, E.: Modelling daily water level fluctuations of lake van (eastern turkey) using artificial neural networks. Fundam. Appl. Limnol. 187(3), 177–189 (2016).  https://doi.org/10.1127/fal/2015/0736. https://www.ingentaconnect.com/content/schweiz/fal/2016/00000187/00000003/art00001CrossRefGoogle Scholar
  5. 5.
    El-Shafie, A., Jaafer, O., Seyed, A.: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in klang river malaysia. Int. J. Phys. Sci. 6(12), 2875–2888 (2011)Google Scholar
  6. 6.
    Generalitat de Catalunya: Agència Catalana de l’Aigua (2019). Accessed Mar 2019. http://aca.gencat.cat/ca/inici
  7. 7.
    Generalitat de Catalunya: Servei Meteorológic de Catalunya (2019). Accessed Mar 2019. http://www.meteo.cat/wpweb/serveis/formularis/peticio-dinformes-i-dades-meteorologiques/peticio-de-dades-meteorologiques
  8. 8.
    Hipni, A., El-shafie, A., Najah, A., Karim, O.A., Hussain, A., Mukhlisin, M.: Daily forecasting of dam water levels: comparing a support vector machine (svm) model with adaptive neuro fuzzy inference system (anfis). Water Resour. Manag. 27(10), 3803–3823 (2013).  https://doi.org/10.1007/s11269-013-0382-4CrossRefGoogle Scholar
  9. 9.
    Jain, S.K., Das, A., Srivastava, D.K.: Application of ann for reservoir inflowprediction and operation. J. Water Resour. Plann. Manag. 125(5), 263–271 (1999).  https://doi.org/10.1061/(ASCE)0733-9496(1999)125:5(263). https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9496%281999%29125%3A5%28263%29CrossRefGoogle Scholar
  10. 10.
    Jun-He, Y., Ching-Hsue, C., Chia-Pan, C.: A time-series water level forecasting model based on imputation and variable selection method. Comput. Intell. Neurosci. 2017, 11 (2017)Google Scholar
  11. 11.
    Kilinç, I., Ciğizoğlu, K.: Reservoir management using artificial neural networks. In: 14th. Reg. Directorate of DSI (State Hydraulic Works) (2005)Google Scholar
  12. 12.
    Kisi, O., Nia, A.M., Gosheh, M.G., Tajabadi, M.R.J., Ahmadi, A.: Intermittentstreamflow forecasting by using several data driven techniques. Water Resour. Manag. 26(2), 457–474 (2012).  https://doi.org/10.1007/s11269-011-9926-7CrossRefGoogle Scholar
  13. 13.
    Moeeni, H., Bonakdari, H., Fatemi, S.E., Zaji, A.H.: Assessment of stochastic models and a hybrid artificial neural network-genetic algorithm method in forecasting monthly reservoir inflow. INAE Lett. 2(1), 13–23 (2017).  https://doi.org/10.1007/s41403-017-0017-9CrossRefGoogle Scholar
  14. 14.
    Mokhtar, S.A., Ishak, W.H.W., Norwawi, N.M.: Modelling of reservoir water release decision using neural network and temporal pattern of reservoir water level. In: 2014 5th International Conference on Intelligent Systems, Modelling and Simulation. pp. 127–130. January 2014.  https://doi.org/10.1109/ISMS.2014.27
  15. 15.
    Nwobi-Okoye, C., Igboanugo, A.: Predicting water levels at kainji dam using artificial neural networks. Niger. J. Technol. (NIJOTECH) 32(1), 129–136 (2013)Google Scholar
  16. 16.
    Ondimu, S., Murase, H.: Reservoir level forecasting using neural networks: lake naivasha. Biosyst. Eng. 96(1), 135–138 (2007).  https://doi.org/10.1016/j.biosystemseng.2006.09.003. http://www.sciencedirect.com/science/article/pii/S1537511006003059CrossRefGoogle Scholar
  17. 17.
    Pasupa, K., Jungjareantrat, S.: Water levels forecast in thailand: a case study of chao phraya river. In: 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV). pp. 1–6. November 2016.  https://doi.org/10.1109/ICARCV.2016.7838716
  18. 18.
    Quiles, R.C., Roma, J.C., Roig, J.G., Alfonso, J.M.: Minería de datos: Modelos y algoritmos. UOC (2017)Google Scholar
  19. 19.
    Rani, S., Parekh, F.: Predicting reservoir water level using artificial neural network. Int. J. Innovative Res. Sci., Eng. Technol. 3(7) (2014) Google Scholar
  20. 20.
    Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Comparison of the arma, arima, and the autoregressive artificial neural network models in forecasting the monthly inflow of dez dam reservoir. J. Hydrol. 476, 433–441 (2013).  https://doi.org/10.1016/j.jhydrol.2012.11.017. http://www.sciencedirect.com/science/article/pii/S002216941200981XCrossRefGoogle Scholar
  21. 21.
    Valizadeh, N., El-Shafie, A.: Forecasting the level of reservoirs using multiple input fuzzification in anfis. Water Resour. Manag. 27(9), 3319–3331 (2013).  https://doi.org/10.1007/s11269-013-0349-5CrossRefGoogle Scholar
  22. 22.
    Wang, A., Liao, H., Chang, T.: Adaptive neuro-fuzzy inference system on downstream water level forecasting. In: 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. vol. 3, pp. 503–507. October 2008.  https://doi.org/10.1109/FSKD.2008.671
  23. 23.
    Wieland, R., Mirschel, W., Zbell, B., Groth, K., Pechenick, A., Fukuda, K.: A new library to combine artificial neural networks and support vector machines with statistics and a database engine for application in environmental modeling. Environ. Modell. Softw. 25(4), 412–420 (2010).  https://doi.org/10.1016/j.envsoft.2009.11.006. http://www.sciencedirect.com/science/article/pii/S1364815209002953CrossRefGoogle Scholar
  24. 24.
    Çimen, M., Kisi, O.: Comparison of two different data-driven techniques in modeling lake level fluctuations in turkey. J. Hydrol. 378(3), 253–262 (2009).  https://doi.org/10.1016/j.jhydrol.2009.09.029. http://www.sciencedirect.com/science/article/pii/S0022169409006015CrossRefGoogle Scholar
  25. 25.
    Üneş, F., Demirci, M., Kişi, O.: Prediction of millers ferry dam reservoir level in usa using artificial neural network. Periodica Polytech. Civil Eng. 59(3), 309–318 (2015).  https://doi.org/10.3311/PPci.7379. https://pp.bme.hu/ci/article/view/7379CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Computer Science, Multimedia and TelecommunicationsUniversitat Oberta de Catalunya BarcelonaBarcelonaSpain

Personalised recommendations