• Francesca Alemanno
  • Fernando Alemanno


Origin and function of various neurotransmitters are expounded, from acetylcholine to catecholamine, glutamate, substance P, GABA, serotonin and melatonin with a final section on memory.


Neurotransmitters Ionotropic and metabotropic receptors Acetylcholine Catecholamines Substance P Glutamate GABA Serotonin Memory 


  1. 1.
    Vincenti E. In: Galzigna L, Vincenti E, editors. Lezioni di biochimica applicata. Padova: Cortina Editore; 1981. p. 29.Google Scholar
  2. 2.
    Abelson KSP, Höglund AU. Intravenously administered oxotremorine and atropine, in doses known to affect pain threshold, affect the intraspinal release of acetylcholine in rats. Pharmacol Toxicol. 2002;90:187–92.CrossRefGoogle Scholar
  3. 3.
    Manzoni A. The Bettrothed. Middlesex: Penguin Books (Classics); 1972. p. 256.Google Scholar
  4. 4.
    Vassalle M. Analysis of cardiac pacemaker potential using a “voltage clamp” technique. Am J Physiol. 1966;210:1335–41.CrossRefGoogle Scholar
  5. 5.
    DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature. 1991;351:145–7.CrossRefGoogle Scholar
  6. 6.
    DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981;314:359–76.CrossRefGoogle Scholar
  7. 7.
    DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol. 1981;314:377–93.CrossRefGoogle Scholar
  8. 8.
    DiFrancesco D. Funny channels in the control of cardiac rhythm and mode of action of selective blockers. Pharmacol Res. 2006;53:399–406.CrossRefGoogle Scholar
  9. 9.
    Brogioni S, Cerbai E, Mugelli A. Canali If nell’ attività di pacemaker del nodo seno-atriale. G Ital Cardiol. 2006;7(7. Suppl. 1):20S–8S.Google Scholar
  10. 10.
    Zaza A, Rocchetti M, DiFrancesco D. Modulation of hyperpolarization activated current (If) by adenosine in rabbit sino-atrial myocytes. Circulation. 1996;94:734–41.CrossRefGoogle Scholar
  11. 11.
    Marzotti A, Alemanno F, et al. Valutazione di alcuni parametri bioumorali rilevati su sangue e linfa di animali sottoposti a shock sperimentale in condizioni diverse di anestesia. Acta Anaesth It. 1976;XXVII(7):199–210.Google Scholar
  12. 12.
    Vincenti E. In: Galzigna L, Vincenti E, editors. Lezioni di biochimica applicata: 25. Padova: Cortina Editore; 1981.Google Scholar
  13. 13.
    Alemanno F. Clonidine mechanism of action. In: Alemanno F, Bosco M, Barbati A, editors. Anesthesia of the upper limb. Milan: Springer Verlag; 2014. p. 254–5.CrossRefGoogle Scholar
  14. 14.
    Ganong WF. Fisiologia medica. Padova: Piccin Editore; 1973.Google Scholar
  15. 15.
    Von Euler US, Gaddum JH. An unidentified depressor substance in certain tissue extracts. J Physiol. 1931;72(6):74–87.CrossRefGoogle Scholar
  16. 16.
    Brown JL, Liu H, Maggio JE, et al. Morphological characterization of substance P receptor-immunoreactive neurons in the rat spinal cord and trigeminal nucleus caudalis. J Comp Neurol. 1995;356:327–44.CrossRefGoogle Scholar
  17. 17.
    Kwok RH. Chinese restaurant syndrome (letter). New Engl J Med. 1968;278:796.PubMedGoogle Scholar
  18. 18.
    Maerselli PL, Garattini S. Monosodium glutamate and Chinese restaurant syndrome. Nature. 1970;227:611–2.CrossRefGoogle Scholar
  19. 19.
    Freeman MJ. Reconsidering the effects of monosodium glutamate: a literature review. Am Acad Nurse Pract. 2006;18(10):482–6.CrossRefGoogle Scholar
  20. 20.
    Ayres A. The Wit & Wisdom of Mark Twain. New York: Harper & Row Edit; 1987. p. 139.Google Scholar
  21. 21.
    Laborit H. Les Régulations metaboliques. Paris: Masson & Cie Editeurs; 1965.Google Scholar

Further Reading

  1. Aiazzi Mancini M, Donatelli L. Trattato di farmacologia. Milano: Vallardi Editore; 1969.Google Scholar
  2. Bonhoeffer T, Yuste R. Spine motility. Phenomenology, mechanisms, and function. Neuron. 2002;35(6):1019–27.CrossRefGoogle Scholar
  3. D’Anna G. La neurotrasmissione glutammatergica—INBIOCHEM—inside Biomolecular Chemistry Genn. 2012.Google Scholar
  4. Devlin TM. Biochimica. Napoli: EDISES; 2012.Google Scholar
  5. Dong Y, Green T, Saal D, et al. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci. 2006;9(4):475–7.CrossRefGoogle Scholar
  6. Garret RH, Grisham CM. Biochimica. Padova: Piccin Editore; 2014.Google Scholar
  7. Gasparini L. L’ossido di azoto.
  8. Ialenti A. trasmissione-colinergica.
  9. GGoogle Scholar
  10. Jorgensen EM. GABA. Worm Book Editor. 2005.
  11. Kim SJ, Linden DJ. Ubiquitous plasticity and memory storage. Neuron. 2007;56(4):582–92.CrossRefGoogle Scholar
  12. Lynch G. Memory enhancement. The search for mechanism-based drugs. Nat Neurosci. 2002;5(Suppl):1035–8.CrossRefGoogle Scholar
  13. Malenka RC, Bear MF. LTP and LTD. An embarrassment of riches. Neuron. 2004;44(1):5–21.CrossRefGoogle Scholar
  14. Marie H, Morishita W, Yu X, et al. Generation of silent synapses by acute in vivo expression of CaMKIV and CREB. Neuron. 2005;45(5):741–52.CrossRefGoogle Scholar
  15. Mora F, Segovia G, del Arco A. Aging, plasticity and environmental enrichment. Structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev. 2007;55(1):78–88.CrossRefGoogle Scholar
  16. Nelson DL, Cox MM. Introduzione alla biochimica di Lehninger. Bologna: Zanichelli Editore; 2015.Google Scholar
  17. Nelson DL, Cox MM. Lehninger principles of biochemistry. 7th edn. USA:Freman and Company; 2017.Google Scholar
  18. Rittà E. I Neurotrasmettitori: glutammato, GABA, dopamina, serotonina, melatonina.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Francesca Alemanno
    • 1
  • Fernando Alemanno
    • 2
  1. 1.PsychologistGraduated at University of Padua, FISPPA DepartmentPadovaItaly
  2. 2.Anaesthesia and Intensive CareBrescia Clinical InstitutesBresciaItaly

Personalised recommendations