Advertisement

Theories of Narcosis

  • Fernando AlemannoEmail author
Chapter

Abstract

The various historic hypotheses regarding narcosis are reviewed. The chapter closes with the action on the multimodal receptors of inhalatory anaesthetics.

Keywords

Theories of narcosis Protoplasmic semi-coagulation Partition coefficient theory Oxidative phosphorylation inhibition The clathrates Multimodal receptors of inhalation anaesthetics 

References

  1. 1.
    Giardina B. Libro di Anestesia. Torino: Cortina Editore; 1976.Google Scholar
  2. 2.
    Aggarwal P, Wali JP. Lidocaine in refractory status epilepticus: a forgotten drug in the emergency department. Am J Emerg Med. 1993;11:243–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Walker IA, Slovis CM. Lidocaine in the treatment of status epilepticus. Acad Emerg Med. 1997;4:918–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Alemanno F. Middle Interscalene block (Alemanno technique), In: Alemanno F, Bosco M, Barbati A. Anesthesia of the upper limb. A state of art guide. Italia: Springer; 2014. p. 80 (6.13.1).Google Scholar
  5. 5.
    Laborit H. Les Régulations metaboliques. Paris: Masson & Cie Editeurs; 1965.Google Scholar
  6. 6.
    Laborit H. L’anesthesie facilitee par les synergies medicamentoses. Paris: Masson et Cie; 1951.Google Scholar
  7. 7.
    Laborit H, Huguenard P, Allaume R. Un nouvou stabilisateur vegetatif : le 4560 RP (chloropromazine). Presse méd. 1952;60(10):206–8.Google Scholar
  8. 8.
    Carlon CA, Cavalloni L. Importanza dei riflessi neurovegetativi durante narcosi e nella genesi della malattia postoperatoria. Comunicato alla “Società Triveneta di Chirurgia” ed alla “Sez. Alta Italia della Soc. Ital. di Anestesiologia”, il 21/12/1952. Acta Anaesth; Vol. IV (1) Gennaio-Febbraio 1953.Google Scholar
  9. 9.
    Ciocatto E. La neuroleptoanalgesia. In: Ciocatto E, editor. Lezioni di Anestesiologia e Rianimazione, Cap. 7. Torino: Cortina Editore; 1977. p. 147–54.Google Scholar
  10. 10.
    De Castro G, Mundeleer P. Anesthésie sans sommeil: “Neuroleptoanalgesie”. Acta Chir Belg. 1959;58:689–93.Google Scholar
  11. 11.
    De Castro G, Mundeleer P. Anesthésie sans barbituriques. La neuroleptoanalgésie. Anesth Analg. 1959;16:1022.Google Scholar
  12. 12.
    De Castro G, Mundeleer P. Dehydrobenzoperidol et phentanyl: Due anesthésiques novoux qui appartent de nouvelle possibilities à la neuroleptonalgésie. In: Symposium sur la neuroleptoanalgésie dans le cadre du Congrès Europeen d’Anesthesiologie à Vienne le 5 septembre 1962.Google Scholar
  13. 13.
    Galzigna L, Vincenti E. Lezioni di biochimica applicata. Padova: Cortina Editore; 1981.Google Scholar
  14. 14.
    Claude B. Leçons sur les anesthésiques et sur l’asphyxie. Paris: J. B. Baillier Editeur; 1875.Google Scholar
  15. 15.
    Charles R. Traité de métapsychique. Paris: Librairie Félix Alcan; 1922.Google Scholar
  16. 16.
    Meyer HH. Die Narkose und ihre allgemeine Theorie. In: Handbuch der normalen und pathologiscen Phisyiologie, vol. 1. Berlin: Bethe und al. Verlag; 1927. p. 531.CrossRefGoogle Scholar
  17. 17.
    Overton E. Studien ȕber die Narkose zugleichen ein Beitrag zu allgemeinen Pharmakologie. Jena: Von Gustav Fischer Verlag; 1901.Google Scholar
  18. 18.
    Meyer K, Hemmi H. Studien ȕber die Narkose Theorie. Biochem Z. 1935;39:277.Google Scholar
  19. 19.
    Franks NP, Lieb WR. Molecular mechanism of general anesthesia. Nature. 1982;300:487–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Franks NP, Lieb WR. What is the molecular nature of general anesthetics target sites ? Trends Pharmacol Sci. 1987;8:169–74.CrossRefGoogle Scholar
  21. 21.
    Franks NP, Lieb WR. Where do general anesthetics act ? Nature. 1978;274:339–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Quastel JH. Effects of anaesthetics, depressants and tranquilizers on brai metabolism. In: Elliott KAC, Page IH, Quastel JH, editors. Neurochemistry. Springfield: Charles C Thomas – Publisher; 1962. p. 790–812.Google Scholar
  23. 23.
    Chance B, Hollunger G. Inhibition of electron and energy transfer in mitochondria. Effect of amytal, thiopental, rotenone, progesterone and methylene glycol. J Biol Chem. 1963;278:418–31.Google Scholar
  24. 24.
    Pumphrey AM, Redfearn ER. Inhibition of succinate oxidation by barbiturates in tightly coupled mitochondria. Biochem Biophys Acta. 1963;74:317–27.PubMedCrossRefGoogle Scholar
  25. 25.
    Hulme NA, Krantz JC. Effect of ethyl-ether on oxidative phosphorylation in the brain. Anesthesiology. 1955;16:627–31.PubMedCrossRefGoogle Scholar
  26. 26.
    Levy L, Featherstone RM. The effect of xenon and nitrous oxide on “in vitro” Guinea pig brain respiration and oxidative phosphorylation. J Pharmacol Exp Ther. 1954;110:221–5.PubMedGoogle Scholar
  27. 27.
    Hanna JP, Ramundo ML. Rhabdomyolysis and hypoxia associated with prolonged propofol infusion in children. Neurology. 1998;50:301–3.PubMedCrossRefGoogle Scholar
  28. 28.
    Vasile B, et al. La fisiopatologia della sindrome da infusione di propofol: un nome semplice per una sindrome complessa. Intensive Care Med. 2003;29:1417–25.PubMedCrossRefGoogle Scholar
  29. 29.
    Parke TJ, et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five reports. BMJ. 1992;305:613–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Strikland RA, Murray MJ. Fatal metabolic acidosis in paediatric patient receiving an infusion of propofol in the intensive care unit: is there a relationship? Crit Care Med. 1995;23:405–9.CrossRefGoogle Scholar
  31. 31.
    Van Straaten EA, et al. Rhabdomyolysis and pulmonary hypertension in a child, possibly due to long-term highdose propofol infusion. Crit Care Med. 1996;22:997.Google Scholar
  32. 32.
    Bernsohn J, Namajuk J, Cchrane LS. Inhibition of brain cytochrome oxidase and ATP-ase by chloropromazine analogues. Proc Soc Exp Biol Med. 1956;92:201–3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ferri S, Galatulas I. Deidrobenzoperidolo e consumo di ossigeno del tessuto nervoso in presenza o no di alcuni metaboliti del ciclo di Krebs. Boll Soc Ital Biol. 1965:1240.Google Scholar
  34. 34.
    Miller SL. A theory of gaseous anesthetics. Physiology. 1961;47:1515–24.Google Scholar
  35. 35.
    Pauling L. A molecular theory of general anesthesia. Science. 1961;134:15–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Gray HB. Chemical bonds: an introduction to atomic and molecular structure. Mill Valley: University Science Books; 1994. p. 232.Google Scholar
  37. 37.
    Giunta F, Natale G, Delturco M, Deltacca M. Xenon a review of its anesthetic and pharmacological properties. Appl Cardiopulm Pathophysiol. 1996;6(2):95–103.Google Scholar
  38. 38.
    Giunta F, Ferrari A, Del Turco M, Ferrari E. Caratteristiche anestetiche del gas Xenon. Minerva Anestesiol. 1997;63:355–66.Google Scholar
  39. 39.
    Giunta F, Ranieri VM, Natale G, Zucchi R, Ferrari A. Xenon anaesthesia: the italian experience. Appl Cardiopulm Pathophysiol. 2000;9:57–8.Google Scholar
  40. 40.
    Jordan BD, Wright EL. Xenon as an anesthetic agent. AANA J. 2010;78(5):387–92.PubMedGoogle Scholar
  41. 41.
    Barber AF, Carnevale V, Klein ML, Eckenhoff RG, Covarrubias M. Modulation of a voltage gated Na+ channel by sevoflurane involves multiple sites and distinct mechanisms. PNAS. 2014;111(N° 18):6726–31.PubMedCrossRefGoogle Scholar
  42. 42.
    Moore JT, et al. Direct activation of sleep-promoting VLPO neurons by volatile anesthetics contributes to anesthetic hypnosis. Curr Biol. 2012;22(21):2008–16.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Eckenhoff RG, Johansson JS. Molecular interactions between inhaled anesthetics and proteins. Pharmacol Rev. 1997;49(4):343–68.PubMedGoogle Scholar
  44. 44.
    Bergmann W. Relief of postanesthetic vomiting trough pyridoxine. Can Med Assoc J. 1947;56(May):554.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Stricker C, Goldblatt S, Warm IS, Jackson DE. Clinical experiences with use of trichloroethylene in production of over 300 analgesics and anesthesia. Anesth Analg. 1935;14:68–71.Google Scholar
  46. 46.
    Busato G, Maifreni F, Alemanno F. Alotano e fegato. Acta Anaesthesiol Ital. 1973;XXIV, Fasc V:573–605.Google Scholar
  47. 47.
    Torri G. Anestetici Inalatori. Torino: Edizioni Minerva Medica; 2007.Google Scholar
  48. 48.
    Baxter PJ, Kharasch ED. Rehydration of desiccated Baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology. 1997 May;86(5):1061–5.PubMedCrossRefGoogle Scholar
  49. 49.
    Wann KT, MacDonald AG. Actions and interactions of high pressure and general anaesthetics. Prog Neurobiol. 1988;30:271–307.PubMedCrossRefGoogle Scholar
  50. 50.
    Joly V, Richebe P, Guiqnard B, et al. Remifentanil-induced postoperative analgesia and its preventions with small-doses ketamine. Anesthesiology. 2005;103(1):147–55.PubMedCrossRefGoogle Scholar
  51. 51.
    Santonocito C, Noto A, Crimi C, Sanfilippo F. Remifentanil-induced postoperative hyperalgesia: current perspectives on mechanisms and therapeutic strategies. Local Reg Anesth. 2018;11:15–23.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Marzotti A, Alemanno F, Pierri A, Costa PP, Sammartano G. Valutazione di alcuni parametri bioumorali rilevati su sangue e linfa di animali sottoposti a shock sperimentale in condizioni diverse di anestesia. Acta Anaesthesiol Ital. 1976;27(N° 2):199–210.Google Scholar

Further Reading

  1. Carlon CA, Mondini PG. Manuale di Anestesia 1949. Padova: CEDAM.Google Scholar
  2. Collins VJ. Priciples of anesthesiology. Philadelphia: Lea & Febiger; 1976.Google Scholar
  3. Cray SH, Robinson BH, Cox PN. Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit Care Med. 1998;26:2089–92.CrossRefGoogle Scholar
  4. Dubouchet N, Le Brigand J. Anesthesie e reanimation, vol. 1. Paris: Editions Medicales Flammarion; 1957. p. 139.Google Scholar
  5. Gasparetto A, Giron G. Introduzione biochimica all’anestesia. Acta Anaesthesiol. 1965;XVI(III):415–22.Google Scholar
  6. Gasparetto A, Simone M, Tayoli E. Basi biochimiche dell’Anestesia. Tipografia Editrice “La Garangola”. Estratto da Acta Anaesthesiologica Vol XIX Fasc. 5 Settembre-Ottobre 1968.Google Scholar
  7. Hales TG, Jones MV, Harrison NL. Evidence for subunit dependent direct activation of GABA A receptor by isoflurane. Anesthesiology. 1992;77:698.CrossRefGoogle Scholar
  8. Koishi R, et al. A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem. 2004;279(10):9532–8.PubMedCrossRefGoogle Scholar
  9. Kuperman AS, et al. Procaine action: antagonism by adenosine triphosphate and other nucleotides. Science. 1964;144:1222–3.PubMedCrossRefGoogle Scholar
  10. Lin LH, Whiting P, Hrris RA. Molecular determinants of general anesthetic action: role of GABA receptor structure. J Neurochem. 1993;60(4):1548–53.PubMedCrossRefGoogle Scholar
  11. Lu G, Kranz JC. The “in vitro” studies of the influence of adenosine triphosphste (ATP) dephosphorylation by central depressants and stimulants. Anesthesiology. 1953;14:348–58.PubMedCrossRefGoogle Scholar
  12. Natale G, Giunta F, et al. Effects of repeated exposures to xenon on rat adrenal cortex ultrastructure. J Submicrosc Cytol Pathol. 2002;34(3):329–34.PubMedGoogle Scholar
  13. Wakai A, Kohno T, Yamakura T, Okamoto M, Ataka T, Baba H. Action of isoflurane on the substantia gelatinosa neurons of the adult rat spinal cord. Anesthesiology. 2005 Feb;102(2):379–86.PubMedCrossRefGoogle Scholar
  14. Yu FH, Yarov-Yarovoy V, Gutman GA, Catteral WA. Overview of molecular relationships in the voltage-gated Ion channel superfamily. Pharmacol Rev. 2005;57:387–95.PubMedCrossRefGoogle Scholar
  15. Zucchi R, RoncaTestoni S, Giunta F, Ronca G. Interaction of isoflurane, halothane and xenon with skeletal muscle ryanodine receptor. In: Xenon anesthesia today. Ospedaletto: Pacini Editore; 1997. p. 77–80.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Anaesthesia and Intensive CareBrescia Clinical InstitutesBresciaItaly

Personalised recommendations