Advertisement

Hemorrhagic Shock

  • Andrew J. Young
  • Jeremy W. CannonEmail author
Chapter
  • 6 Downloads

Abstract

For patients with severe hemorrhage resulting in shock, two key principles determine survival: early blood product resuscitation and hemorrhage control. Recognizing the patient in hemorrhagic shock often proves difficult as robust compensatory mechanisms often obscure the picture, yet early recognition is essential to survival. This chapter will review the essential elements for early diagnosis of hemorrhagic shock and will emphasize the current best practices in hemostatic resuscitation and early hemorrhage control. Blood product administration is central to the resuscitation strategy while current evidence also supports the use of adjunctive therapies and diagnostic tools including electrolyte repletion, hemostatic adjuncts, and viscoelastic measures of coagulation. Balloon aortic occlusion has also emerged as an appealing tool for establishing early proximal vascular control for abdominal or pelvic hemorrhage. Ultimately, these interventions are designed to sustain life while surgical, angiographic, or endoscopic hemorrhage control is achieved.

Keywords

Hemorrhagic shock Massive transfusion Resuscitative endovascular balloon occlusion of the aorta (REBOA) Tranexamic acid (TXA) Thromboelastography (TEG) 

References

  1. 1.
    Tisherman SA, Schmicker RH, Brasel KJ, et al. Detailed description of all deaths in both the shock and traumatic brain injury hypertonic saline trials of the resuscitation outcomes consortium. Ann Surg. 2015;261(3):586–90.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Remick KN, Schwab CW, Smith BP, Monshizadeh A, Kim PK, Reilly PM. Defining the optimal time to the operating room may salvage early trauma deaths. J Trauma Acute Care Surg. 2014;76(5):1251–8.  https://doi.org/10.1097/TA.0000000000000218.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cannon JW. Hemorrhagic shock. N Engl J Med. 2018;378(4):370–9.  https://doi.org/10.1056/NEJMra1705649.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Halmin M, Chiesa F, Vasan SK, et al. Epidemiology of massive transfusion. Crit Care Med. 2016;44(3):468–77.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–128.CrossRefGoogle Scholar
  6. 6.
    Whitehurst BD. Lower gastrointestinal bleeding. Surg Clin North Am. 2018;98(5):1059–72.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Copland A, Munroe CA, Friedland S, Triadafilopoulos G. Integrating urgent multidetector CT scanning in the diagnostic algorithm of active lower GI bleeding. YMGE. 2010;72(2):402–5.Google Scholar
  8. 8.
    Cannon JW, Khan MA, Raja AS, et al. Damage control resuscitation in patients with severe traumatic hemorrhage. J Trauma Acute Care Surg. 2017;82(3):605–17.CrossRefGoogle Scholar
  9. 9.
    Choron RL, Wang A, Van Orden K, Capano-Wehrle L, Seamon MJ. Emergency central venous catheterization during trauma resuscitation: a safety analysis by site. Am Surg. 2015;81(5):527–31.PubMedGoogle Scholar
  10. 10.
    Ives C, Moe D, Inaba K, et al. Ten years of mechanical complications of central venous catheterization in trauma patients. Am Surg. 2012;78(5):545–9.PubMedGoogle Scholar
  11. 11.
    Chreiman KM, Dumas RP, Seamon MJ, et al. The intraosseous have it. J Trauma Acute Care Surg. 2018;84(4):558–63.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Savage SA, Zarzaur BL, Croce MA, Fabian TC. Redefining massive transfusion when every second counts. J Trauma Acute Care Surg. 2013;74(2):2.  https://doi.org/10.1097/TA.0b013e31827a3639.CrossRefGoogle Scholar
  13. 13.
    Callcut RA, Cotton BA, Muskat P, et al. Defining when to initiate massive transfusion. J Trauma Acute Care Surg. 2013;74(1):59–68.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;66(2):346–52.  https://doi.org/10.1097/TA.0b013e3181961c35.CrossRefPubMedGoogle Scholar
  15. 15.
    Pidcoke HF, Aden JK, Mora AG, et al. Ten-year analysis of transfusion in operation iraqi freedom and operation enduring freedom. J Trauma Acute Care Surg. 2012;73:S452.CrossRefGoogle Scholar
  16. 16.
    Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study. JAMA Surg. 2013;148(2):127–10.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma. JAMA. 2015;313(5):471–12.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ruseckaite R, McQuilten ZK, Oldroyd JC, et al. Descriptive characteristics and in-hospital mortality of critically bleeding patients requiring massive transfusion: results from the Australian and New Zealand massive transfusion registry. Vox Sang. 2017;112(3):240–8.CrossRefGoogle Scholar
  19. 19.
    MacKay EJ, Stubna MD, Holena DN, et al. Abnormal calcium levels during trauma resuscitation are associated with increased mortality, increased blood product use, and greater hospital resource consumption. Anesth Analg. 2017;125(3):895–901.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94(6):1176–86. S0012-3692(16)31299-5 [pii]CrossRefPubMedGoogle Scholar
  21. 21.
    C R, H JB. Optimal fluid therapy for traumatic hemorrhagic shock. Crit Care Clin. 2017;33(1):15–36.CrossRefGoogle Scholar
  22. 22.
    Shafi S, Collinsworth AW, Richter KM, et al. Bundles of care for resuscitation from hemorrhagic shock and severe brain injury in trauma patients—translating knowledge into practice. J Trauma Acute Care Surg. 2016;81(4):780–94.CrossRefPubMedGoogle Scholar
  23. 23.
    Roberts I, Blackhall K, Alderson P, Bunn F, Schierhout G. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2011;48(1):800–44.Google Scholar
  24. 24.
    Bulger EM, May S, Kerby JD, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock. Ann Surg. 2011;253(3):431–41.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cohn SM, McCarthy J, Stewart RM, Jonas RB, Dent DL, Michalek JE. Impact of low-dose vasopressin on trauma outcome: prospective randomized study. World J Surg. 2010;35(2):430–9.CrossRefGoogle Scholar
  26. 26.
    Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137(1):209–20.  https://doi.org/10.1378/chest.09-0252.CrossRefPubMedGoogle Scholar
  27. 27.
    Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma. 2003;54(6):1127–30.  https://doi.org/10.1097/01.TA.0000069184.82147.06.CrossRefPubMedGoogle Scholar
  28. 28.
    Baxter J, Cranfield KR, Clark G, Harris T, Bloom B, Gray AJ. Do lactate levels in the emergency department predict outcome in adult trauma patients? A systematic review. J Trauma Acute Care Surg. 2016;81(3):555–66.CrossRefGoogle Scholar
  29. 29.
    Dezman ZDW, Comer AC, Smith GS, Narayan M, Scalea TM, Hirshon JM. Failure to clear elevated lactate predicts 24-hour mortality in trauma patients. J Trauma Acute Care Surg. 2015;79(4):580–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ouellet J, Roberts DJ, Tiruta C, et al. Admission base deficit and lactate levels in Canadian patients with blunt trauma. J Trauma Acute Care Surg. 2012;72(6):1532–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Plant V, Vanguri P, Anand R, Haynes J, Aboutanos M, Ferrada P. Image-guided resuscitation with limited transthoracic echocardiogram in pediatric trauma patients. Pediatr Emerg Care. 2018;34(2):121–4.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ferrada P, Evans D, Wolfe L, et al. Findings of a randomized controlled trial using limited transthoracic echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma bay. J Trauma Acute Care Surg. 2014;76(1):31–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morrison CA, Carrick MM, Norman MA, et al. Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma. 2011;70(3):652–63.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Binz S, McCollester J, Thomas S, et al. Review article CRASH-2 study of tranexamic acid to treat bleeding in trauma patients: a controversy fueled by science and social media. J Blood Transfus. 2015;2015:1–12.CrossRefGoogle Scholar
  35. 35.
    Collaborators C. Articles effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet. 2010;376(9734):23–32.CrossRefGoogle Scholar
  36. 36.
    CRASH-2 collaborators, Roberts I, Shakur H, et al. The importance of early treatment with tranexamic acid in bleeding trauma patients: An exploratory analysis of the CRASH-2 randomised controlled trial. Lancet. 2011;377(9771):2.  https://doi.org/10.1016/S0140-6736(11)60278-X.CrossRefGoogle Scholar
  37. 37.
    Holcomb JB. Transport time and preoperating room hemostatic interventions are important: improving outcomes after severe truncal injury. Crit Care Med. 2018;46(3):447–53.  https://doi.org/10.1097/CCM.0000000000002915.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Seamon MJ, Fisher CA, Gaughan J, et al. Prehospital procedures before emergency department thoracotomy: “Scoop and run” Saves lives. J Trauma. 2007;63(1):113–20.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Berg RJ, Okoye O, Teixeira PG, Inaba K, Demetriades D. The double jeopardy of blunt thoracoabdominal trauma. Arch Surg. 2012;147(6):1–7.CrossRefGoogle Scholar
  40. 40.
    Hirshberg A, Wall MJ, Allen MK, Mattox KL. Double jeopardy: thoracoabdominal injuries requiring surgical intervention in both chest and abdomen. 1995;39(2):225–31.Google Scholar
  41. 41.
    Rotondo MF, Schwab CW, McGonigal MD, et al. Damage control': an approach for improved survival in exsanguinating penetrating abdominal injury. J Trauma. 1993;35(3):3.CrossRefGoogle Scholar
  42. 42.
    Rotondo MF, Zonies DH. The damage control sequence and underlying logic. Surg Clin North Am. 1997;77(4):761–77.CrossRefGoogle Scholar
  43. 43.
    Duchesne JC, McSwain NE Jr, Cotton BA, et al. Damage control resuscitation: the new face of damage control. J Trauma. 2010;69(4):976–90.CrossRefGoogle Scholar
  44. 44.
    Chovanes J, Cannon JW, Nunez TC. The evolution of damage control surgery. Surg Clin North Am. 2012;92(4):859–75.CrossRefGoogle Scholar
  45. 45.
    Harvin JA, Wray CJ, Steward J, et al. Control the damage: morbidity and mortality after emergent trauma laparotomy. Am J Sociol. 2016;212(1):34–9.Google Scholar
  46. 46.
    Coccolini F, Stahel PF, Montori G, et al. Pelvic trauma: WSES classification and guidelines. World J Emerg Surg. 2017:1–18.Google Scholar
  47. 47.
    Taylor JR, Harvin JA, Martin C, Holcomb JB, Moore LJ. Vascular complications from resuscitative endovascular balloon occlusion of the aorta: Life over limb? J Trauma Acute Care Surg. 2017;83(1 Suppl 1):S123.  https://doi.org/10.1097/TA.0000000000001514.CrossRefGoogle Scholar
  48. 48.
    Manzano-Nunez R, Escobar-Vidarte MF, Naranjo MP, et al. Expanding the field of acute care surgery: a systematic review of the use of resuscitative endovascular balloon occlusion of the aorta (REBOA) in cases of morbidly adherent placenta. Eur J Trauma Emerg Surg. 2018;44(4):519–26.  https://doi.org/10.1007/s00068-017-0840-4.CrossRefPubMedGoogle Scholar
  49. 49.
    Morrison JJ, Galgon RE, Jansen JO, Cannon JW, Rasmussen TE, Eliason JL. A systematic review of the use of resuscitative endovascular balloon occlusion of the aorta in the management of hemorrhagic shock. J Trauma Acute Care Surg. 2016;80(2):324–34.CrossRefGoogle Scholar
  50. 50.
    DuBose JJ, Scalea TM, Brenner M, et al. The AAST prospective aortic occlusion for resuscitation in trauma and acute care surgery (AORTA) registry. J Trauma Acute Care Surg. 2016;81(3):409–19.CrossRefGoogle Scholar
  51. 51.
    Brenner M, Inaba K, Aiolfi A, et al. Resuscitative endovascular balloon occlusion of the aorta and resuscitative thoracotomy in select patients with hemorrhagic shock: Early results from the American association for the surgery of trauma's aortic occlusion in resuscitation for trauma and acute care surgery registry. J Am Coll Surg. 2018;226(5):730–40. S1072-7515(18)30098-X [pii]CrossRefGoogle Scholar
  52. 52.
    Robertson OH. Transfusion with preserved red blood cells. Br Med J. 1918;1(2999):691–5.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Spinella PC. Warm fresh whole blood transfusion for severe hemorrhage: U.S. military and potential civilian applications. Crit Care Med. 2008;36:S345.CrossRefGoogle Scholar
  54. 54.
    Spinella PC, Cap AP. Whole blood. Curr Opin Hematol. 2016;23(6):536–42.CrossRefGoogle Scholar
  55. 55.
    Spinella PC, Perkins JG, Grathwohl KW, Beekley AC, Holcomb JB. Warm fresh whole blood is independently associated with improved survival for patients with combat-related traumatic injuries. J Trauma. 2009;66:S76.CrossRefGoogle Scholar
  56. 56.
    Cotton BA, Podbielski J, Camp E, et al. A randomized controlled pilot trial of modified whole blood versus component therapy in severely injured patients requiring large volume transfusions. Ann Surg. 2013;258(4):1–7.CrossRefGoogle Scholar
  57. 57.
    Yazer MH, Jackson B, Sperry JL, Alarcon L, Triulzi DJ, Murdock AD. Initial safety and feasibility of cold-stored uncrossmatched whole blood transfusion in civilian trauma patients. J Trauma Acute Care Surg. 2016;81(1):21–6.CrossRefGoogle Scholar
  58. 58.
    Boffard KD, Riou B, Warren B, et al. Recombinant factor VIIa as adjunctive therapy for bleeding control in severely injured trauma patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J Trauma. 2005;59(1):8–18.CrossRefGoogle Scholar
  59. 59.
    Hauser CJ, Boffard K, Dutton R, et al. Results of the CONTROL trial: efficacy and safety of recombinant activated factor VII in the management of refractory traumatic hemorrhage. J Trauma. 2010;69(3):489–500.CrossRefGoogle Scholar
  60. 60.
    Spinella PC, Perkins JG, McLaughlin DF, et al. The effect of recombinant activated factor VII on mortality in combat-related casualties with severe trauma and massive transfusion. J Trauma. 2008;64(2):286–94.CrossRefPubMedGoogle Scholar
  61. 61.
    Sarode R, Milling TJ, Refaai MA, Circulation AM, 2013. Efficacy and safety of a four-factor prothrombin complex concentrate (4F-PCC) in patients on vitamin K antagonists presenting with major bleeding: a randomized, plasma-controlled, Phase IIIb Study.Google Scholar
  62. 62.
    Jehan F, Aziz H, OʼKeeffe T, et al. The role of four-factor prothrombin complex concentrate in coagulopathy of trauma. J Trauma Acute Care Surg. 2018;85(1):18–24.CrossRefPubMedGoogle Scholar
  63. 63.
    Brekelmans MPA. Benefits and harms of 4-factor prothrombin complex concentrate for reversal of vitamin K antagonist associated bleeding: a systematic review and meta-analysis. J Thromb Thrombolysis. 2017;44(1):118–29.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Joseph B, Pandit V, Khalil M, et al. Use of prothrombin complex concentrate as an adjunct to fresh frozen plasma shortens time to craniotomy in traumatic brain injury patients. Neurosurgery. 2015;76(5):601–7.CrossRefPubMedGoogle Scholar
  65. 65.
    Goldstein JN, Refaai MA, Milling TJ Jr, et al. Four-factor prothrombin complex concentrate versus plasma for rapid vitamin K antagonist reversal in patients needing urgent surgical or invasive interventions: a phase 3b, open-label, non-inferiority, randomised trial. Lancet. 2015;385(9982):2077–87.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wafaisade A, Lefering R, Maegele M, et al. Administration of fibrinogen concentrate in exsanguinating trauma patients is associated with improved survival at 6 hours but not at discharge. J Trauma Acute Care Surg. 2013;74(2):387–95.CrossRefPubMedGoogle Scholar
  67. 67.
    Howley IW, Haut ER, Jacobs L, Morrison JJ, Scalea TM. Is thromboelastography (TEG)-based resuscitation better than empirical 1:1 transfusion? Trauma Surg Acute Care Open. 2018;3(1):140.CrossRefGoogle Scholar
  68. 68.
    Gonzalez E, Moore EE, Moore HB, et al. Goal-directed hemostatic resuscitation of trauma-induced coagulopathy. Ann Surg. 2016;263(6):1051–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Doran CM, Woolley T, Midwinter MJ. Feasibility of using rotational thromboelastometry to assess coagulation status of combat casualties in a deployed setting. J Trauma. 2010;69:S48.CrossRefGoogle Scholar
  70. 70.
    Holcomb JB, Minei KM, Scerbo ML, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department. Ann Surg. 2012;256(3):476–86.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Traumatology, Surgical Critical Care & Emergency General SurgeryPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of SurgeryUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations