Coagulopathy in the Intensive Care Unit

  • Kayla J. Kolbe
  • Ivan N. CoEmail author


Coagulopathy in the Intensive Care Unit is a commonly encountered problem in the critically ill. Standard laboratory tests can be time consuming and inaccurate. Usual coagulation tests such as prothrombin time, partial thromboplastin time, and international normalized ratio do not always reliably describe clinical coagulopathy, and transfusion thresholds for platelets, fibrinogen, and fresh frozen plasma are not stringently evidence-driven. Rotational thromboelastometry (ROTEM) is a real-time assay that depicts a patient’s coagulopathic state and allows for directed transfusion of products. Although based on an old test, it has been more widely used in medical ICUs in recent years. ROTEM has been described in the setting of cirrhosis, and has strong recommendations for use to guide transfusion in coagulopathic patients, resulting in less blood product transfusion than standard laboratory tests. ROTEM is a fast test that can allow for directed transfusion in real-time with the aim of minimizing unnecessary production transfusion while maximizing hemostasis.


Coagulopathy ROTEM (rotational thromboelastometry) Viscoelastic hemostatic assay TEG (thromboelastography) 



Amplitude 10 min after clot time


Amplitude 20 min after clot time


Clot formation time


Clotting time


Chest X-ray


Fresh-frozen plasma




International normalized ratio


Lysis index


Lysis index 30 min after clot time


Maximum clot firmness


Maximum clot lysis


Nasal cannula


Non-invasive ventilation


Packed red blood cells


Prothrombin time


Partial thromboplastin time


Rotational thromboelastometry


Systemic inflammatory response syndrome


Sequential organ failure assessment


Transfusion-associated cardiac overload




Transfusion-associated lung injury


Viscoelastic hemostatic assay


Von Willebrand factor


  1. 1.
    Hartert H. Not Available. Klin Wochenschr. 1948;26(37–38):577–83.CrossRefPubMedGoogle Scholar
  2. 2.
    Luddington RJ. Thrombelastography/thromboelastometry. Clin Lab Haematol. 2005;27(2):81–90.CrossRefPubMedGoogle Scholar
  3. 3.
    Whiting D, DiNardo JA. TEG and ROTEM: technology and clinical applications. Am J Hematol. 2014;89(2):228–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Tanaka K, Bollinger D, et al. Rotational Thromboelastometry (ROTEM) Based Coagulation Management in Cardiac Surgery and Major Trauma. J Cardiothorac Vasc Anesth. 2012;26(6):1083–93.Google Scholar
  5. 5.
    ROTEM Analysis. Published 2018. Accessed May 2019.
  6. 6.
    Schmidt DE, Holmstrom M, Majeed A, Naslin D, Wallen H, Agren A. Detection of elevated INR by thromboelastometry and thromboelastography in warfarin treated patients and healthy controls. Thromb Res. 2015;135(5):1007–11.CrossRefPubMedGoogle Scholar
  7. 7.
    Mittermayr M, Margreiter J, Velik-Salchner C, et al. Effects of protamine and heparin can be detected and easily differentiated by modified thrombelastography (Rotem): an in vitro study. Br J Anaesth. 2005;95(3):310–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Seyve L, Richarme C, Polack B, Marlu R. Impact of four direct oral anticoagulants on rotational thromboelastometry (ROTEM). Int J Lab Hematol. 2018;40(1):84–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Faraoni D, Willems A, Romlin BS, Belisle S, Van der Linden P. Development of a specific algorithm to guide haemostatic therapy in children undergoing cardiac surgery: a single-Centre retrospective study. Eur J Anaesthesiol. 2015;32(5):320–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Woolley T, Midwinter M, Spencer P, Watts S, Doran C, Kirkman E. Utility of interim ROTEM((R)) values of clot strength, A5 and A10, in predicting final assessment of coagulation status in severely injured battle patients. Injury. 2013;44(5):593–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Davoren JB, Wang S. Blood disorders. In: Hammer GD, McPhee SJ, editors. Pathophysiology of disease. 7th ed: McGraw-Hill; 2014. p. 115–44.Google Scholar
  12. 12.
    Hoffman M. Cell-mediated hemostasis. In: Gonzalez E, Moore HB, Moore EE, editors. Trauma induced coagulopathy. Switzerland: Springer; 2016. p. 3–14.CrossRefGoogle Scholar
  13. 13.
    Haas T, Fries D, Tanaka KA, Asmis L, Curry NS, Schochl H. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth. 2015;114(2):217–24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kaufman RM, Djulbegovic B, Gernsheimer T, et al. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med. 2015;162(3):205–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Greeno E, McCullough J, Weisdorf D. Platelet utilization and the transfusion trigger: a prospective analysis. Transfusion. 2007;47(2):201–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Zeidler K, Arn K, Senn O, Schanz U, Stussi G. Optimal preprocedural platelet transfusion threshold for central venous catheter insertions in patients with thrombocytopenia. Transfusion. 2011;51(11):2269–76.CrossRefPubMedGoogle Scholar
  17. 17.
    Vavricka SR, Walter RB, Irani S, Halter J, Schanz U. Safety of lumbar puncture for adults with acute leukemia and restrictive prophylactic platelet transfusion. Ann Hematol. 2003;82(9):570–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Hebert PC, Wells G, Blajchman MA, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in critical care investigators, Canadian critical care trials group. N Engl J Med. 1999;340(6):409–17.CrossRefPubMedGoogle Scholar
  19. 19.
    Holst LB, Haase N, Wetterslev J, et al. Transfusion requirements in septic shock (TRISS) trial - comparing the effects and safety of liberal versus restrictive red blood cell transfusion in septic shock patients in the ICU: protocol for a randomised controlled trial. Trials. 2013;14:150.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Holst LB, Haase N, Wetterslev J, et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371(15):1381–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Cooper DJ, McQuilten ZK, Nichol A, et al. Age of red cells for Transfusion and outcomes in critically ill adults. N Engl J Med. 2017;377(19):1858–67.CrossRefPubMedGoogle Scholar
  22. 22.
    Yang L, Stanworth S, Hopewell S, Doree C, Murphy M. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion. 2012;52(8):1673–86. quiz 1673CrossRefPubMedGoogle Scholar
  23. 23.
    Holbrook A, Schulman S, Witt DM, et al. Evidence-based management of anticoagulant therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e152S–84S.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA. 2015;313(5):471–82.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Contreras M, Ala FA, Greaves M, et al. Guidelines for the use of fresh frozen plasma. British Committee for Standards in Haematology, working Party of the Blood Transfusion Task Force. Transfus Med. 1992;2(1):57–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Green L, Bolton-Maggs P, Beattie C, et al. British Society of Haematology Guidelines on the spectrum of fresh frozen plasma and cryoprecipitate products: their handling and use in various patient groups in the absence of major bleeding. Br J Haematol. 2018;181(1):54–67.CrossRefPubMedGoogle Scholar
  27. 27.
    Hunt BJ, Allard S, Keeling D, et al. A practical guideline for the haematological management of major haemorrhage. Br J Haematol. 2015;170(6):788–803.CrossRefPubMedGoogle Scholar
  28. 28.
    Callum JL, Nascimento B. Cryoprecipitate transfusion. In: Gonzalez E, Moore HB, Moore EE, editors. Trauma induced coagulopathy. Cham: Springer International Publishing; 2016. p. 339–46.CrossRefGoogle Scholar
  29. 29.
    Ciavarella D, Reed RL, Counts RB, et al. Clotting factor levels and the risk of diffuse microvascular bleeding in the massively transfused patient. Br J Haematol. 1987;67(3):365–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Manor PG. Turnaround times in the laboratory: a review of the literature. Clin Lab Sci. 1999;12(2):85–9.PubMedGoogle Scholar
  31. 31.
    Hawkins RC. Laboratory turnaround time. Clin Biochem Rev. 2007;28(4):179–94.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Cotton BA, Faz G, Hatch QM, et al. Rapid thrombelastography delivers real-time results that predict transfusion within 1 hour of admission. J Trauma. 2011;71(2):407–14. discussion 414–407CrossRefPubMedGoogle Scholar
  33. 33.
    Davenport R, Manson J, De'Ath H, et al. Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med. 2011;39(12):2652–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gorlinger K, Dirkmann D, Solomon C, Hanke AA. Fast interpretation of thromboelastometry in non-cardiac surgery: reliability in patients with hypo-, normo-, and hypercoagulability. Br J Anaesth. 2013;110(2):222–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Curry NS, Davenport R, Pavord S, et al. The use of viscoelastic haemostatic assays in the management of major bleeding: a British Society for Haematology guideline. Br J Haematol. 2018;182(6):789–806.CrossRefPubMedGoogle Scholar
  36. 36.
    Tripodi A, Primignani M, Chantarangkul V, et al. The coagulopathy of cirrhosis assessed by thromboelastometry and its correlation with conventional coagulation parameters. Thromb Res. 2009;124(1):132–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Bedreli S, Sowa JP, Malek S, et al. Rotational thromboelastometry can detect factor XIII deficiency and bleeding diathesis in patients with cirrhosis. Liver Int. 2017;37(4):562–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Fayed N, Mourad W, Yassen K, Gorlinger K. Preoperative Thromboelastometry as a predictor of Transfusion requirements during adult living donor liver transplantation. Transfus Med Hemother. 2015;42(2):99–108.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Chau TN, Chan YW, Patch D, Tokunaga S, Greenslade L, Burroughs AK. Thrombelastographic changes and early rebleeding in cirrhotic patients with variceal bleeding. Gut. 1998;43(2):267–71.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Pustavoitau A, Lesley M, Ariyo P, et al. Predictive modeling of massive Transfusion requirements during liver transplantation and its potential to reduce utilization of blood Bank resources. Anesth Analg. 2017;124(5):1644–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Alamo JM, Leon A, Mellado P, et al. Is "intra-operating room" thromboelastometry useful in liver transplantation? A case-control study in 303 patients. Transplant Proc. 2013;45(10):3637–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang SC, Shieh JF, Chang KY, et al. Thromboelastography-guided transfusion decreases intraoperative blood transfusion during orthotopic liver transplantation: randomized clinical trial. Transplant Proc. 2010;42(7):2590–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Wikkelso A, Wetterslev J, Moller AM, Afshari A. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: a systematic review with meta-analysis and trial sequential analysis. Anaesthesia. 2017;72(4):519–31.CrossRefPubMedGoogle Scholar
  44. 44.
    Fahrendorff M, Oliveri RS, Johansson PI. The use of viscoelastic haemostatic assays in goal-directing treatment with allogeneic blood products - a systematic review and meta-analysis. Scand J Trauma Resusc Emerg Med. 2017;25(1):39.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Afshari A, Wikkelso A, Brok J, Moller AM, Wetterslev J. Thrombelastography (TEG) or thromboelastometry (ROTEM) to monitor haemotherapy versus usual care in patients with massive transfusion. Cochrane Database Syst Rev. 2011;3:CD007871.Google Scholar
  46. 46.
    Daudel F, Kessler U, Folly H, Lienert JS, Takala J, Jakob SM. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study. Crit Care. 2009;13(2):R42.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Muller MC, Meijers JC, Vroom MB, Juffermans NP. Utility of thromboelastography and/or thromboelastometry in adults with sepsis: a systematic review. Crit Care. 2014;18(1):R30.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ostrowski SR, Windelov NA, Ibsen M, Haase N, Perner A, Johansson PI. Consecutive thrombelastography clot strength profiles in patients with severe sepsis and their association with 28-day mortality: a prospective study. J Crit Care. 2013;28(3):317. e311–311CrossRefPubMedGoogle Scholar
  49. 49.
    Adamzik M, Langemeier T, Frey UH, et al. Comparison of thrombelastometry with simplified acute physiology score II and sequential organ failure assessment scores for the prediction of 30-day survival: a cohort study. Shock. 2011;35(4):339–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Department of Emergency Medicine and Department of Internal Medicine, Division of Pulmonary and Critical CareMichigan MedicineAnn ArborUSA

Personalised recommendations