Advertisement

Overview of Nanomaterial-Assisted Technologies for Denitrification Processes

  • Naghmeh Sadat Mirbagheri
  • Samad SabbaghiEmail author
  • Pu Chen
  • Zahra Bahmani
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 27)

Abstract

Nowadays due to the industrial growth, excessive utilization of agricultural fertilizers, and various ecological changes, the content of nitrate increases in our environmental water. The World Health Organization recommends the permissible nitrate concentration of 10 mg L−1 for human consumption. Nitrate concentrations above 10 mg L−1 limit can cause major health problems such as blue baby syndrome and formation of carcinogenic nitrosamines in humans. Therefore, the removal of nitrate from contaminated water using various technologies is the topic of many research studies. In this context, denitrification technologies based on organic and inorganic nanomaterials with high efficiency have gained considerable attention. These technologies can be categorized to the degradation and separation processes with varying degrees of efficiency, cost, and ease of operation. An overview of these processes in terms of their performances and issues is reviewed in this chapter. Moreover, the effect of different operational parameters including initial nitrate concentration, nanomaterial loading, nanomaterial durability, solution pH, temperature, and dissolved oxygen on the removal percentage of nitrate is discussed. Finally, advantages and disadvantages of these processes are highlighted to give the readers a complete, comprehensive, and balanced view of the latest technologies for the treatment of nitrate-contaminated waters.

Keywords

Nanomaterial Denitrification process Water treatment Nitrate contamination Nano zero-valent iron Photocatalytic denitrification Biological denitrification Adsorption technology Membrane technology Capacitive deionization 

Notes

Acknowledgments

The authors gratefully acknowledge the National Elites Foundation of Iran and Shiraz University for supporting this project. The authors greatly appreciate Mr. Mahdi Mohsenzadeh for his assistance in this work.

References

  1. Akple MS, Low J, Qin Z, Wageh S, Al-Ghamdi AA, Yu J, Liu S (2015) Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chin J Catal 36(12):2127–2134.  https://doi.org/10.1016/S1872-2067(15)60989-5 CrossRefGoogle Scholar
  2. An Y, Li T, Jin Z, Dong M, Xia H, Wang X (2010) Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour Technol 101(24):9825–9828.  https://doi.org/10.1016/j.biortech.2010.07.110 CrossRefGoogle Scholar
  3. Anderson JA (2011) Photocatalytic nitrate reduction over Au/TiO2. Catal Today 175(1):316–321.  https://doi.org/10.1016/j.cattod.2011.04.009 CrossRefGoogle Scholar
  4. Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40(4):3000–3009.  https://doi.org/10.1039/C5NJ03478G CrossRefGoogle Scholar
  5. Azadbakht P, Pourzamani H, Petroudy S, Bina B (2016) Removal of nitrate from aqueous solution using nanocrystalline cellulose. Int J Environ Health Eng 5(1):17–17.  https://doi.org/10.4103/2277-9183.190643 CrossRefGoogle Scholar
  6. Babaei AA, Azari A, Rezaei Kalantary R, Kakavandi B (2015) Enhanced removal of nitrate from water using nZVI@MWCNTs composite: synthesis, kinetics and mechanism of reduction. Water Sci Technol 72(11):1988–1999.  https://doi.org/10.2166/wst.2015.417 CrossRefGoogle Scholar
  7. Bae S, Hanna K (2015) Reactivity of nanoscale zero-valent iron in unbuffered systems: effect of pH and Fe(II) dissolution. Environ Sci Technol 49(17):10536–10543.  https://doi.org/10.1021/acs.est.5b01298 CrossRefGoogle Scholar
  8. Barrabés N, Sá J (2011) Catalytic nitrate removal from water, past, present and future perspectives. Appl Catal B 104(1):1–5.  https://doi.org/10.1016/j.apcatb.2011.03.011 CrossRefGoogle Scholar
  9. Beiki MR, Yazdian F, Rasekh B, Rashedi H, Rostami AD (2016) Effect of metal nanoparticles on biological denitrification process: a review. J Appl Biotechnol Rep 3(1):353–358Google Scholar
  10. Bekhradinassab E, Sabbaghi S (2014) Removal of nitrate from drinking water using nano SiO2–FeOOH–Fe core–shell. Desalination 347:1–9.  https://doi.org/10.1016/j.desal.2014.05.024 CrossRefGoogle Scholar
  11. Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168(2):493–504.  https://doi.org/10.1016/j.cej.2011.01.103 CrossRefGoogle Scholar
  12. Bhatnagar A, Kumar E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163(3):317–323.  https://doi.org/10.1016/j.cej.2010.08.008 CrossRefGoogle Scholar
  13. Cai Y, Feng YP (2016) Review on charge transfer and chemical activity of TiO2: mechanism and applications. Prog Surf Sci 91(4):183–202.  https://doi.org/10.1016/j.progsurf.2016.11.001 CrossRefGoogle Scholar
  14. Cartagena P, El Kaddouri M, Cases V, Trapote A, Prats D (2013) Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR-NF/RO treatment. Sep Purif Technol 110:132–143.  https://doi.org/10.1016/j.seppur.2013.03.024 CrossRefGoogle Scholar
  15. Chen D, Yang K, Wang H (2016) Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalin Water Treat 57(8):3482–3488.  https://doi.org/10.1080/19443994.2014.986533 CrossRefGoogle Scholar
  16. Chiueh PT, Lee YH, Su CY, Lo SL (2011) Assessing the environmental impact of five Pd-based catalytic technologies in removing of nitrates. 192:837–845.  https://doi.org/10.1016/j.jhazmat.2011.05.096 CrossRefGoogle Scholar
  17. David MB, Drinkwater LE, McIsaac GF (2010) Sources of nitrate yields in the Mississippi River Basin. J Environ Qual 39(5):1657–1667.  https://doi.org/10.2134/jeq2010.0115 CrossRefGoogle Scholar
  18. Dizge N (2014) Performance evaluation of cross-flow membrane system for wastewater reuse from the wood-panels industry. Environ Technol 35(6):681–690.  https://doi.org/10.1080/09593330.2013.841293 CrossRefGoogle Scholar
  19. Dong J, Zhao Y, Zhao R, Zhou R (2010) Effects of pH and particle size on kinetics of nitrobenzene reduction by zero-valent iron. J Environ Sci 22(11):1741–1747.  https://doi.org/10.1016/S1001-0742(09)60314-4 CrossRefGoogle Scholar
  20. Doudrick K, Yang T, Hristovski K, Westerhoff P (2013) Photocatalytic nitrate reduction in water: managing the hole scavenger and reaction by-product selectivity. Appl Catal B 136–137:40–47.  https://doi.org/10.1016/j.apcatb.2013.01.042 CrossRefGoogle Scholar
  21. Dozzi MV, Selli E (2013) Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C 14(Supplement C):13–28.  https://doi.org/10.1016/j.jphotochemrev.2012.09.002 CrossRefGoogle Scholar
  22. Epsztein R, Nir O, Lahav O, Green M (2015) Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem Eng J 279:372–378.  https://doi.org/10.1016/j.cej.2015.05.010 CrossRefGoogle Scholar
  23. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267(Supplement C):194–205.  https://doi.org/10.1016/j.jhazmat.2013.12.062 CrossRefGoogle Scholar
  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38.  https://doi.org/10.1038/238037a0 CrossRefGoogle Scholar
  25. Gao B, Zhang M, Yao Y (2013) Biochar/metal composites, methods of making biochar/metal composites, and methods of removing contaminants from water. WO Patent 2013126477Google Scholar
  26. Garcia Segura S, Brillas E (2017) Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C 31(Supplement C):1–35.  https://doi.org/10.1016/j.jphotochemrev.2017.01.005 CrossRefGoogle Scholar
  27. Geiger CL, Ruiz NE, Clausen CA, Reinhart DR, Quinn JW (2002) Ultrasound pretreatment of elemental iron: kinetic studies of dehalogenation reaction enhancement and surface effects. Water Res 36(5):1342–1350.  https://doi.org/10.1016/S0043-1354(01)00319-0 CrossRefGoogle Scholar
  28. Ghaee A, Zerafat MM, Askari P, Sabbaghi S, Sadatnia B (2017) Fabrication of polyamide thin-film nanocomposite membranes with enhanced surface charge for nitrate ion removal from water resources. Environ Technol 38(6):772–781.  https://doi.org/10.1080/09593330.2016.1231223 CrossRefGoogle Scholar
  29. Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut 222(1):103–148.  https://doi.org/10.1007/s11270-011-0812-y CrossRefGoogle Scholar
  30. Girish Kumar S, Koteswara Rao KSR (2015) Tungsten-based nanomaterials (WO3 & Bi2WO6): modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl Surf Sci 355(Supplement C):939–958.  https://doi.org/10.1016/j.apsusc.2015.07.003 CrossRefGoogle Scholar
  31. Guan X, Sun Y, Qin H, Li J, Lo IMC, He D, Dong H (2015) The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water Res 75(Supplement C):224–248.  https://doi.org/10.1016/j.watres.2015.02.034 CrossRefGoogle Scholar
  32. Gudipati CS, Woodling RE (2013) Radial flow column including zero-valent iron media. US Patent 20130206700, 15 Aug 2013Google Scholar
  33. Gündüz O (2015) Water quality perspectives in a changing world. Water Qual Expo Health 7(1):1–3.  https://doi.org/10.1007/s12403-015-0161-y CrossRefGoogle Scholar
  34. Hamid S, Bae S, Lee W, Amin MT, Alazba AA (2015) Catalytic nitrate removal in continuous bimetallic Cu–Pd/nanoscale zerovalent iron system. Ind Eng Chem Res 54(24):6247–6257.  https://doi.org/10.1021/acs.iecr.5b01127 CrossRefGoogle Scholar
  35. Harris TD, Smith VH, Graham JL, Van de Waal DB, Tedesco LP, Clercin N (2016) Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 6(2):199–210.  https://doi.org/10.5268/IW-6.2.938 CrossRefGoogle Scholar
  36. Häyrynen K, Pongrácz E, Väisänen V, Pap N, Mänttäri M, Langwaldt J, Keiski RL (2009) Concentration of ammonium and nitrate from mine water by reverse osmosis and nanofiltration. Desalination 240(1–3):280–289.  https://doi.org/10.1016/j.desal.2008.02.027 CrossRefGoogle Scholar
  37. Hoinkis J, Valero-Freitag S, Caporgno MP, Pätzold C (2011) Removal of nitrate and fluoride by nanofiltration – a comparative study. Desalin Water Treat 30(1–3):278–288.  https://doi.org/10.5004/dwt.2011.2103 CrossRefGoogle Scholar
  38. Hord NG, Conley MN (2017) Regulation of dietary nitrate and nitrite: balancing essential physiological roles with potential health risks. In: Bryan NS, Loscalzo J (eds) Nitrite and nitrate in human health and disease. Humana Press, Cham, pp 153–162.  https://doi.org/10.1007/978-3-319-46189-2 CrossRefGoogle Scholar
  39. Hosseini SM, Ataie Ashtiani B, Kholghi M (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination 276(1):214–221.  https://doi.org/10.1016/j.desal.2011.03.051 CrossRefGoogle Scholar
  40. Hristovski KD, Markovski J, Westerhoff PK, Sinha S (2018) Low temperature synthesis of aluminum hydr(oxide) inside porous media. US Patent 20180086648, 29 Mar 2018Google Scholar
  41. Hu C, Dong J, Wang T, Liu R, Liu H, Qu J (2018) Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode. Chem Eng J 335(Supplement C):475–482.  https://doi.org/10.1016/j.cej.2017.10.167 CrossRefGoogle Scholar
  42. Hwang YH, Kim DG, Shin HS (2011) Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl Catal B 105(1):144–150.  https://doi.org/10.1016/j.apcatb.2011.04.005 CrossRefGoogle Scholar
  43. Im JK, Son HS, Zoh KD (2011) Perchlorate removal in Fe0/H2O systems: impact of oxygen availability and UV radiation. J Hazard Mater 192(2):457–464.  https://doi.org/10.1016/j.jhazmat.2011.05.030 CrossRefGoogle Scholar
  44. Jamei MR, Khosravi MR, Anvaripour B (2013) Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method. Asia Pac J Chem Eng 8(5):767–774.  https://doi.org/10.1002/apj.1720 CrossRefGoogle Scholar
  45. Jensen VB, Darby JL, Seidel C, Gorman C (2012) Drinking water treatment for nitrate. Technical report 6 in: addressing nitrate in California’s drinking water with a focus on Tulare lake basin and Salinas valley groundwater. Report for the state water resources control board report to the legislature. Center for Watershed Sciences, University of California, DavisGoogle Scholar
  46. Jiang C, Liu Y, Chen Z, Megharaj M, Naidu R (2013) Impact of iron-based nanoparticles on microbial denitrification by Paracoccus sp. strain YF1. Aquat Toxicol 142–143:329–335.  https://doi.org/10.1016/j.aquatox.2013.09.005 CrossRefGoogle Scholar
  47. Juholin P, Kääriäinen ML, Riihimäki M, Sliz R, Aguirre JL, Pirilä M, Fabritius T, Cameron D, Keiski RL (2018) Comparison of ALD coated nanofiltration membranes to unmodified commercial membranes in mine wastewater treatment. Sep Purif Technol 192:69–77.  https://doi.org/10.1016/j.seppur.2017.09.005 CrossRefGoogle Scholar
  48. Jung J, Bae S, Lee W (2012) Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst. Appl Catal B Environ 127(Supplement C):148–158.  https://doi.org/10.1016/j.apcatb.2012.08.017 CrossRefGoogle Scholar
  49. Khalil AME, Eljamal O, Jribi S, Matsunaga N (2016) Promoting nitrate reduction kinetics by nanoscale zero valent iron in water via copper salt addition. Chem Eng J 287:367–380.  https://doi.org/10.1016/j.cej.2015.11.038 CrossRefGoogle Scholar
  50. Khalil AME, Eljamal O, Amen TWM, Sugihara Y, Matsunaga N (2017a) Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water. Chem Eng J 309(Supplement C):349–365.  https://doi.org/10.1016/j.cej.2016.10.080 CrossRefGoogle Scholar
  51. Khalil AME, Eljamal O, Eljamal R, Sugihara Y, Matsunaga N (2017b) Treatment and regeneration of nano-scale zero-valent iron spent in water remediation. Evergreen 4(1):21–28CrossRefGoogle Scholar
  52. Kim YJ, Choi JH (2012) Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization. Water Res 46(18):6033–6039.  https://doi.org/10.1016/j.watres.2012.08.031 CrossRefGoogle Scholar
  53. Kim DG, Hwang YH, Shin HS, Ko SO (2013) Deactivation of nanoscale zero-valent iron by humic acid and by retention in water. Environ Technol 34(12):1625–1635.  https://doi.org/10.1080/09593330.2013.765916 CrossRefGoogle Scholar
  54. Kobwittaya K, Sirivithayapakorn S (2014) Photocatalytic reduction of nitrate over TiO2 and Ag-modified TiO2. J Saudi Chem Soc 18(4):291–298.  https://doi.org/10.1016/j.jscs.2014.02.001 CrossRefGoogle Scholar
  55. Kochuveedu ST, Jang YH, Kim DH (2013) A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chem Soc Rev 42(21):8467–8493.  https://doi.org/10.1039/C3CS60043B CrossRefGoogle Scholar
  56. Lado JJ, Pérez Roa RE, Wouters JJ, Tejedor Tejedor MI, Federspill C, Ortiz JM, Anderson MA (2017) Removal of nitrate by asymmetric capacitive deionization. Sep Purif Technol 183(Supplement C):145–152.  https://doi.org/10.1016/j.seppur.2017.03.071 CrossRefGoogle Scholar
  57. Leonard KC, Genthe JR, Sanfilippo JL, Zeltner WA, Anderson MA (2009) Synthesis and characterization of asymmetric electrochemical capacitive deionization materials using nanoporous silicon dioxide and magnesium doped aluminum oxide. Electrochim Acta 54(22):5286–5291.  https://doi.org/10.1016/j.electacta.2009.01.082 CrossRefGoogle Scholar
  58. Li P, Lin K, Fang Z, Wang K (2017) Enhanced nitrate removal by novel bimetallic Fe/Ni nanoparticles supported on biochar. J Clean Prod 151(Supplement C):21–33.  https://doi.org/10.1016/j.jclepro.2017.03.042 CrossRefGoogle Scholar
  59. Liou YH, Lo SL, Lin CJ, Kuan WH, Weng SC (2005) Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. J Hazard Mater 126(1):189–194.  https://doi.org/10.1016/j.jhazmat.2005.06.038 CrossRefGoogle Scholar
  60. Liu HB, Chen TH, Chang DY, Chen D, Liu Y, He HP, Yuan P, Frost R (2012) Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater Chem Phys 133(1):205–211.  https://doi.org/10.1016/j.matchemphys.2012.01.008 CrossRefGoogle Scholar
  61. Liu H, Guo M, Zhang Y (2014a) Nitrate removal by Fe0/Pd/Cu nano-composite in groundwater. Environ Technol 35(7):917–924.  https://doi.org/10.1080/09593330.2013.856926 CrossRefGoogle Scholar
  62. Liu XW, Li WW, Yu HQ (2014b) Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. Chem Soc Rev 43(22):7718–7745.  https://doi.org/10.1039/C3CS60130G CrossRefGoogle Scholar
  63. Liu Y, Lee J, Zhao Y, Zhang M, Wang L, Duan Q (2014c) A novel preparation approach and denitrification performance of TiO2/Fe0 photocatalysts. Desalin Water Treat 57(7):3125–3131.  https://doi.org/10.1080/19443994.2014.983984 CrossRefGoogle Scholar
  64. Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014d) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108(Supplement C):426–432.  https://doi.org/10.1016/j.chemosphere.2014.02.045 CrossRefGoogle Scholar
  65. Lozovskii AV, Stolyarova IV, Prikhod’ko RV, Goncharuk VV (2009) Research of photocatalytic activity of the Ag/TiO2 catalysts in the reduction reaction of nitrate-ions in aqueous media. J Water Chem Technol 31(6):360–366.  https://doi.org/10.3103/S1063455X09060034 CrossRefGoogle Scholar
  66. Luiz DDB, Andersen SLF, Berger C, José HJ, Moreira RDFPM (2012) Photocatalytic reduction of nitrate ions in water over metal-modified TiO2. J Photochem Photobiol A 246(Supplement C):36–44.  https://doi.org/10.1016/j.jphotochem.2012.07.011 CrossRefGoogle Scholar
  67. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8.  https://doi.org/10.1016/j.desal.2010.09.001 CrossRefGoogle Scholar
  68. Matatov-Meytal U, Sheintuch M (2005) Activated carbon cloth-supported Pd–cu catalyst: application for continuous water denitrification. Catal Today 102:121–127.  https://doi.org/10.1016/j.cattod.2005.02.015 CrossRefGoogle Scholar
  69. Markovski J, Garcia J, Hristovski KD, Westerhoff P (2017) Nano-enabling of strong-base ion-exchange media via a room-temperature aluminum (hydr)oxide synthesis method to simultaneously remove nitrate and fluoride. Sci Total Environ 599–600:1848–1855.  https://doi.org/10.1016/j.scitotenv.2017.05.083 CrossRefGoogle Scholar
  70. Mautner A, Maples HA, Sehaqui H, Zimmermann T, Perez De Larraya U, Mathew AP, Lai CY, Li K, Bismarck A (2016) Nitrate removal from water using a nanopaper ion-exchanger. Environ Sci Water Res Technol 2(1):117–124.  https://doi.org/10.1039/c5ew00139k CrossRefGoogle Scholar
  71. Mook WT, Aroua MK, Chakrabarti MH, Low CTJ, Aravind PV, Brandon NP (2013) The application of nano-crystalline PbO2 as an anode for the simultaneous bio-electrochemical denitrification and organic matter removal in an up-flow undivided reactor. Electrochim Acta 94:327–335.  https://doi.org/10.1016/j.electacta.2013.02.001 CrossRefGoogle Scholar
  72. Ni S-Q, Ni J, Yang N, Wang J (2013) Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Bioresour Technol 143(Supplement C):555–561.  https://doi.org/10.1016/j.biortech.2013.06.041 CrossRefGoogle Scholar
  73. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51(Supplement C):104–122.  https://doi.org/10.1016/j.advwatres.2012.02.005 CrossRefGoogle Scholar
  74. Oren Y (2008) Capacitive deionization (CDI) for desalination and water treatment – past, present and future (a review). Desalination 228(1):10–29.  https://doi.org/10.1016/j.desal.2007.08.005 CrossRefGoogle Scholar
  75. Pan JR, Huang C, Hsieh WP, Wu BJ (2012) Reductive catalysis of novel TiO2/Fe0 composite under UV irradiation for nitrate removal from aqueous solution. Sep Purif Technol 84(Supplement C):52–55.  https://doi.org/10.1016/j.seppur.2011.06.024 CrossRefGoogle Scholar
  76. Paschoal FMM, Nuñez L, Lanza MRDV, Zanoni MVB (2013) Nitrate removal on a Cu/Cu2O photocathode under UV irradiation and bias potential. J Adv Oxid Technol 16(1):63–70.  https://doi.org/10.1515/jaots-2013-0106 CrossRefGoogle Scholar
  77. Peng L, Liu Y, Gao SH, Chen X, Xin P, Dai X, Ni BJ (2015) Evaluation on the nanoscale zero valent iron based microbial denitrification for nitrate removal from groundwater. Sci Rep 5(1):12331.  https://doi.org/10.1038/srep12331 CrossRefGoogle Scholar
  78. Pintar A, Batista J, Levec J (2001) Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chem Eng Sci 56(4):1551–1559.  https://doi.org/10.1016/S0009-2509(00)00382-1 CrossRefGoogle Scholar
  79. Ranjit KT, Viswanathan B (1997) Photocatalytic reduction of nitrite and nitrate ions over doped TiO2 catalysts. J Photochem Photobiol A 107(1):215–220.  https://doi.org/10.1016/S1010-6030(97)00025-7 CrossRefGoogle Scholar
  80. Reig M, Licon E, Gibert O, Yaroshchuk A, Cortina JL (2016) Rejection of ammonium and nitrate from sodium chloride solutions by nanofiltration: effect of dominant-salt concentration on the trace-ion rejection. Chem Eng J 303:401–408.  https://doi.org/10.1016/j.cej.2016.06.025 CrossRefGoogle Scholar
  81. Ren HT, Jia SY, Zou JJ, Wu SH, Han X (2015) A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate. Appl Catal B 176–177(Supplement C):53–61.  https://doi.org/10.1016/j.apcatb.2015.03.038 CrossRefGoogle Scholar
  82. Richards LA, Vuachère M, Schäfer AI (2010) Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261(3):331–337.  https://doi.org/10.1016/j.desal.2010.06.025 CrossRefGoogle Scholar
  83. Sá J, Agüera CA, Gross S, Anderson JA (2009) Photocatalytic nitrate reduction over metal modified TiO2. Appl Catal B 85(3):192–200.  https://doi.org/10.1016/j.apcatb.2008.07.014 CrossRefGoogle Scholar
  84. Sá J, Barrabes N, Kleymenov E, Lin C, Föttinger K, Safonova OV, Szlachetko J, van Bokhoven JA, Nachtegaal M, Urakawa A, Crespo GA, Rupprechter G (2012) The oxidation state of copper in bimetallic (Pt-Cu, Pd-Cu) catalysts during water denitration. Cat Sci Technol 2(4):794–799.  https://doi.org/10.1039/C2CY00461E CrossRefGoogle Scholar
  85. Sancho M, Álvarez Blanco S, Kombo GOM, García Fayos B (2016) Experimental determination of nanofiltration models: application to nitrate removal. Desalin Water Treat 57(48–49):22852–22859.  https://doi.org/10.1080/19443994.2016.1173380 CrossRefGoogle Scholar
  86. Santafé-Moros A, Gozálvez-Zafrilla JM, Lora-García J (2007) Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane. Desalination 204(1):63–71.  https://doi.org/10.1016/j.desal.2006.04.024 CrossRefGoogle Scholar
  87. Shi J, Yi S, He H, Long C, Li A (2013) Preparation of nanoscale zero-valent iron supported on chelating resin with nitrogen donor atoms for simultaneous reduction of Pb2+ and NO3. Chem Eng J 230(Supplement C):166–171.  https://doi.org/10.1016/j.cej.2013.06.088 CrossRefGoogle Scholar
  88. Shimizu A, Tokumura M, Nakajima K, Kawase Y (2012) Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation. J Hazard Mater 201–202(Supplement C):60–67.  https://doi.org/10.1016/j.jhazmat.2011.11.009 CrossRefGoogle Scholar
  89. Shin H, Jung S, Bae S, Lee W, Kim H (2014) Nitrite reduction mechanism on a Pd surface. Environ Sci Technol 48(21):12768–12774.  https://doi.org/10.1021/es503772x CrossRefGoogle Scholar
  90. Shinde SS, Bhosale CH, Rajpure KY (2011) Photocatalytic activity of sea water using TiO2 catalyst under solar light. J Photochem Photobiol B 103(2):111–117.  https://doi.org/10.1016/j.jphotobiol.2011.02.002 CrossRefGoogle Scholar
  91. Su Y, Adeleye AS, Huang Y, Sun X, Dai C, Zhou X, Zhang Y, Keller AA (2014) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63(Supplement C):102–111.  https://doi.org/10.1016/j.watres.2014.06.008 CrossRefGoogle Scholar
  92. Sun D, Yang J, Li J, Yu J, Xu X, Yang X (2010) Novel Pd-Cu/bacterial cellulose nanofibers: preparation and excellent performance in catalytic denitrification. Appl Surf Sci 256(7):2241–2244.  https://doi.org/10.1016/j.apsusc.2009.10.034 CrossRefGoogle Scholar
  93. Sun D, Yang W, Zhou L, Sun W, Li Q, Shang JK (2016a) The selective deposition of silver nanoparticles onto {101} facets of TiO2 nanocrystals with co-exposed {001}/{101} facets, and their enhanced photocatalytic reduction of aqueous nitrate under simulated solar illumination. Appl Catal B 182(Supplement C):85–93.  https://doi.org/10.1016/j.apcatb.2015.09.005 CrossRefGoogle Scholar
  94. Sun W, Li Q, Gao S, Shang JK (2012) Monometallic Pd/Fe3O4 catalyst for denitrification of water. Appl Catal B 125:1–9.  https://doi.org/10.1016/j.apcatb.2012.05.014 CrossRefGoogle Scholar
  95. Sun Y, Li J, Huang T, Guan X (2016b) The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: a review. Water Res 100(Supplement C):277–295.  https://doi.org/10.1016/j.watres.2016.05.031 CrossRefGoogle Scholar
  96. Suzuki T, Moribe M, Oyama Y, Niinae M (2012) Mechanism of nitrate reduction by zero-valent iron: equilibrium and kinetics studies. Chem Eng J 183:271–277.  https://doi.org/10.1016/j.cej.2011.12.074 CrossRefGoogle Scholar
  97. Tacke T, Vorlop KD (1993) Kinetische charakterisierung von katalysatoren zur selektiven entfernung von nitrat und nitrit aus wasser. Chem Ing Tech 65:1500–1502.  https://doi.org/10.1002/cite.330651216 CrossRefGoogle Scholar
  98. Tang C, Zhang Z, Sun X (2012) Effect of common ions on nitrate removal by zero-valent iron from alkaline soil. J Hazard Mater 231–232(Supplement C):114–119.  https://doi.org/10.1016/j.jhazmat.2012.06.042 CrossRefGoogle Scholar
  99. Tang S, Wang XM, Mao YQ, Zhao Y, Yang HW, Xie YF (2015) Effect of dissolved oxygen concentration on iron efficiency: removal of three chloroacetic acids. Water Res 73(Supplement C):342–352.  https://doi.org/10.1016/j.watres.2015.01.027 CrossRefGoogle Scholar
  100. Tepuš B, Simonič M, Petrinić I (2009) Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. J Hazard Mater 170(2–3):1210–1217.  https://doi.org/10.1016/j.jhazmat.2009.05.105 CrossRefGoogle Scholar
  101. Tugaoen HON, Garcia-Segura S, Hristovski K, Westerhoff P (2017) Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci Total Environ 599–600:1524–1551.  https://doi.org/10.1016/j.scitotenv.2017.04.238 CrossRefGoogle Scholar
  102. Tung RT (2014) The physics and chemistry of the schottky barrier height. Appl Phys Rev 1:1–54.  https://doi.org/10.1063/1.4858400 CrossRefGoogle Scholar
  103. Vaselbehagh M, Karkhanechi H, Takagi R, Matsuyama H (2015) Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis – experimental verification of theoretical predictions. J Membr Sci 490:301–310.  https://doi.org/10.1016/j.memsci.2015.04.014 CrossRefGoogle Scholar
  104. Wang H, Turner JA (2013) Photoelectrochemical reduction of nitrates at the illuminated p-GaInP2 photoelectrode. Energy Environ Sci 6(6):1802–1805.  https://doi.org/10.1039/C3EE40745D CrossRefGoogle Scholar
  105. Wang KS, Lin CL, Wei MC, Liang HH, Li HC, Chang CH, Fang YT, Chang SH (2010) Effects of dissolved oxygen on dye removal by zero-valent iron. J Hazard Mater 182(1):886–895.  https://doi.org/10.1016/j.jhazmat.2010.07.002 CrossRefGoogle Scholar
  106. Wehbe N, Jaafar M, Guillard C, Herrmann JM, Miachon S, Puzenat E, Guilhaume N (2009) Comparative study of photocatalytic and non-photocatalytic reduction of nitrates in water. Appl Catal A 368(1):1–8.  https://doi.org/10.1016/j.apcata.2009.07.038 CrossRefGoogle Scholar
  107. Wilson WD, Schaldach CM, Bourcier WL, Paul PH (2005) Smart membranes for nitrate removal, water purification, and selective ion transportation. WO Patent 2005105272, 10 Sep 2005Google Scholar
  108. Wisniewski C, Persin F, Cherif T, Sandeaux R, Grasmick A, Gavach C, Lutin F (2002) Use of a membrane bioreactor for denitrification of brine from an electrodialysis process. Desalination 149:331–336.  https://doi.org/10.1016/S0011-9164(02)00805-6 CrossRefGoogle Scholar
  109. Wu D, You H, Liu W, Du J, Jin D (2009) Preparation and photocatalytic bactericidal activity of silver loaded TiO2 thin films. Huagong Xuebao 60(7):1693–1699Google Scholar
  110. Yeo JH, Choi JH (2013) Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode. Desalination 320(Supplement C):10–16.  https://doi.org/10.1016/j.desal.2013.04.013 CrossRefGoogle Scholar
  111. Yin W, Wu J, Li P, Wang X, Zhu N, Wu P, Yang B (2012) Experimental study of zero-valent iron induced nitrobenzene reduction in groundwater: the effects of pH, iron dosage, oxygen and common dissolved anions. Chem Eng J 184(Supplement C):198–204.  https://doi.org/10.1016/j.cej.2012.01.030 CrossRefGoogle Scholar
  112. Yoon IH, Bang S, Chang JS, Gyu Kim M, Kim KW (2011) Effects of pH and dissolved oxygen on Cr(VI) removal in Fe(0)/H2O systems. J Hazard Mater 186(1):855–862.  https://doi.org/10.1016/j.jhazmat.2010.11.074 CrossRefGoogle Scholar
  113. Zeng Y, Walker H, Zhu Q (2017) Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. J Hazard Mater 324(Part B):605–616.  https://doi.org/10.1016/j.jhazmat.2016.11.032 CrossRefGoogle Scholar
  114. Zhang Y, Li Y, Li J, Hu L, Zheng X (2011) Enhanced removal of nitrate by a novel composite: nanoscale zero valent iron supported on pillared clay. Chem Eng J 171(2):526–531.  https://doi.org/10.1016/j.cej.2011.04.022 CrossRefGoogle Scholar
  115. Zhao D, Xu Y (2007) In situ remediation of inorganic contaminants using stabilized zero-valent iron nanoparticles. US Patent 20070256985, 8 Nov 2007Google Scholar
  116. Zhu I, Getting T (2012) A review of nitrate reduction using inorganic materials. Environ Technol Rev 1(1):46–58.  https://doi.org/10.1080/09593330.2012.706646 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Naghmeh Sadat Mirbagheri
    • 1
  • Samad Sabbaghi
    • 1
    • 2
    Email author
  • Pu Chen
    • 2
  • Zahra Bahmani
    • 1
  1. 1.Nanochemical Engineering Department, Faculty of Advanced TechnologiesShiraz UniversityShirazIran
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations