Therapeutic Use of Inorganic Nanomaterials in Malignant Diseases

  • Andreea-Roxana Lupu
  • Traian Popescu
  • Marko Stojanović
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 27)


Neoplastic disease has multifactorial etiology and insidious evolution which make it unlikely to be detected in early stages and very difficult to treat at later times. The effectiveness of standard therapeutic approaches is limited by severe adverse effects, metastasis, and tumor capacity to develop multidrug resistance.

The success of inorganic nanomaterial-based therapeutic agents depends on the degree to which these nanostructures satisfy general requirements for drug safety regarding biocompatibility, biodegradability, and stability and on their antitumor efficacy. Fabrication of such nanomedicines requires adequate assessment and engineering of nanomaterial physicochemical characteristics like particle size, specific surface area, surface charge, hydrodynamic size, and magnetic, optical, and photocatalytic properties. Together with surface functionalization and delivery method, these properties dictate the in vivo “biological identity” of the nanomaterial and its fate with respect to cellular uptake and distribution/accumulation inside the body.

We reviewed recent literature on interdisciplinary studies regarding applications of inorganic nanomaterials in the treatment of cancer. The major functions that inorganic nanomaterials can play in cancer therapy are:
  1. 1.

    Nanocarriers for therapeutic agents and active targeting ligands for molecules overexpressed on tumor tissues as well as for altered signal transduction pathways. Inorganic nanomaterial-based therapeutic agents are able to reduce tumor growth acting on neoplastic vasculature (by inhibiting angiogenesis, vasculogenesis, and vasculogenic mimicry) or on malignant cells (blocking activation of overexpressed receptors and their specific signaling pathways, inducing oxidative stress, and reducing multidrug resistance). Moreover, inorganic nanomaterials are able to inhibit tumor invasiveness and metastasis by reducing degradation of extracellular matrix, exosome secretion, and cell proliferation at the secondary site.

  2. 2.
    Contrast agents and medical adhesives in cancer surgery:
    1. (i).

      Vital staining of sentinel lymph nodes (SLNs) where the first metastasis appears – the use of carbon nanoparticles, single-walled and multilayer carbon nanotubes, or superparamagnetic iron oxide nanoparticles was associated with a significantly higher number of harvested SLNs in breast and cervical tumors, lung cancer, papillary thyroid carcinoma, and prostate carcinoma.

    2. (ii).

      Nanoparticle-based medical adhesives used for surgical wound closure – aqueous suspensions of iron oxide and silicon dioxide nanoparticles were shown to rapidly connect highly vascularized tissues (e.g., liver).

  3. 3.

    Inorganic sensitizers for radiotherapy – gold nanoparticles were reported to significantly enhance the efficiency of ionizing radiation and induce targeted cancer cell apoptosis, tumor growth inhibition, and increases of survival rates in tumor-bearing mice.

  4. 4.

    Antitumor agents based on specific material properties like surface plasmon resonance (photothermal heating), magnetic responsiveness (magnetic hyperthermia), and photocatalysis (photodynamic therapy) – heat generated by plasmonic (gold-based) or magnetic (iron oxide-based) nanomaterials exposed to laser light or alternating magnetic fields, respectively, was shown to efficiently destroy tumors in mouse models or leads to promising results in clinical trials; the antitumor action of photoactivated TiO2-based nanomedicines was assessed in numerous in vitro and several in vivo studies.

  5. 5.

    Adjuvant therapy (iron replacement therapy) – iron oxide colloids (IOC) are more efficient than free iron in treating iron-deficient anemia associated with cancer.


Overall, inorganic-organic therapeutic nanoplatforms provide enhanced treatment efficiency, reduced adverse effects, multiple antitumor action mechanisms, facile cell internalization, and diminished multidrug resistance.


Cancer Inorganic nanomaterials Targeted therapy Nano-sized drug delivery system Hyperthermia Plasmonic photothermal therapy Photodynamic therapy 



Author Traian Popescu acknowledges funding from Romanian National Authority for Scientific Research, under Core Project PN16480101, and from Romanian Ministry of Research and Innovation, CCCDI – UEFISCDI, under national grant PN-III-P1-1.2-PCCDI-2017-0062/contract no. 58/component project no.1. Author Andreea-Roxana Lupu acknowledges support under PN-II-PT-PCCA-2013-4-1386 (NANOPATCH) and PN-III-P1-1.2-PCCDI-2017-0062/contract no. 58/component project no.1. Andreea-Roxana Lupu and Marko Stojanović were also supported by South East Europe Cooperation, University of Hamburg.


  1. Afanas’ev I (2011) Reactive oxygen species signaling in cancer comparison with aging. Aging Dis 2(1):219–230, PMID 22396874Google Scholar
  2. Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61:428–437. CrossRefGoogle Scholar
  3. Ambasta RC, Sharma A, Kumar P (2011) Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 3, PMC3226586CrossRefGoogle Scholar
  4. Anselmo AC, Mitragotri S (2015) A review of clinical translation of inorganic nanoparticles. AAPS J 17(5):1041–1054. CrossRefGoogle Scholar
  5. Anselmo AC, Mitragotri S (2016a) A chemical engineering perspective of nanoparticle-based targeted drug delivery: a unit process approach. AICHE J 62(4):966–974. CrossRefGoogle Scholar
  6. Anselmo AC, Mitragotri S (2016b) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29. CrossRefGoogle Scholar
  7. Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TR, Omkumar RV, John A, Pradeep T (2005) Growth of gold nanoparticles in human cells. Langmuir 21(25):11562–11567. CrossRefGoogle Scholar
  8. Arriortua OK, Garaio E, Herrero de la Parte B, et al (2016) Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases. Sidorenko AS (ed) Beilstein J Nanotechnol 7:1532–1542. CrossRefGoogle Scholar
  9. Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev 32(0). CrossRefGoogle Scholar
  10. Balivada S, Rachakatla RS, Wang H et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119. CrossRefGoogle Scholar
  11. Berlin JM, Pham TT, Sano D, Mohamedali KA, Marcano DC, Myers JN, Touri JM (2011) Non-covalent functionalization of carbon Nanovectors with an antibody enables targeted drug delivery. ACS Nano 5(8):6643–6650. CrossRefGoogle Scholar
  12. Berne BJ, Pecora R (1976) Dynamic light scattering with applications to chemistry, biology, and physics. Wiley-Interscience, New YorkGoogle Scholar
  13. Bulte JWM, Kraitchman DL (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5(6):567–584, PMID:15579045CrossRefGoogle Scholar
  14. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to te tumor microenvironment. Breast Cancer Res 18:84. CrossRefGoogle Scholar
  15. Cai HK, He HF, Tian W, Zhou MQ, Hu Y, Deng YC (2012) Colorectal cancer lymph node staining by activated carbon nanoparticles suspension in vivo or methylene blue in vitro. World J Gastroenterol 18(42):6148–6154. CrossRefGoogle Scholar
  16. Candeias SM, Gailp US (2016) The immune system in cancer prevention, development, and therapy. Anti-Cancer Agents Med Chem 16(1):101–107, PMID: 26299661CrossRefGoogle Scholar
  17. Caracciolo G, Farokhzad OC, Mahmoudi M (2017) Biological identity of nanoparticles in vivo: clinical implications of the protein Corona. Trends Biotechnol 35(3):257–264. Epub 2016 Sep 20CrossRefGoogle Scholar
  18. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177. CrossRefGoogle Scholar
  19. Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H, Dawson KA, Linse S (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104:2050–2055. CrossRefGoogle Scholar
  20. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637. CrossRefGoogle Scholar
  21. Chen C-T, Hung M-C (2013) Beyond anti-VEGF: dual-targeting antiangiogenic and antiproliferative therapy. Am J Transl Res 5(4):393–403, PMCID: PMC3665913Google Scholar
  22. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H (2009) Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 5:2673–2677. CrossRefGoogle Scholar
  23. Commission E (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU), vol L275/38Google Scholar
  24. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in Cancer. J Drug Deliv, Article ID 751075, 12 pages. CrossRefGoogle Scholar
  25. Creixell M, Bohórquez AC, Torres-Lugo M, Rinaldi C (2011) EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5(9):7124–7129. CrossRefGoogle Scholar
  26. De Vries J, Figdor C (2016) Cancer vaccine triggers antiviral-type defences. Nature 534:329–331. CrossRefGoogle Scholar
  27. Dixit S, Miller K, Zhu Y, Mc Kinnon E, Novak T, Kenney ME, Broome AM (2015) Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of PDT drug in glioblastomas. Mol Pharm. CrossRefGoogle Scholar
  28. Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902. CrossRefGoogle Scholar
  29. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chermova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev 65:2078–2086. CrossRefGoogle Scholar
  30. Dubey A, Goswami M, Yaday K, Chaudhary D (2015) Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. PLoS One 10(5):e0127493. CrossRefGoogle Scholar
  31. Dung D, Ramsden J, Graetzel M (1982) Dynamics of interfacial electron transfer processes in colloidal semiconductor systems. J Am Chem Soc 104:2977–2985. CrossRefGoogle Scholar
  32. Eberl J (2008) Visible light photo-oxidations in the presence of bismuth oxides. PhD thesis, Friedrich-Alexander-Universitat, Erlangen-Nurnberg.
  33. Eleonore Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591. CrossRefGoogle Scholar
  34. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239(1):129–135. CrossRefGoogle Scholar
  35. Esipova TV, Ye X, Collins JE, Sakadžić S, Mandeville ET, Murray CB, Vinogradov SA (2012) Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources. Proc Natl Acad Sci U S A 109(51):20826–20831. CrossRefGoogle Scholar
  36. Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20. CrossRefGoogle Scholar
  37. Finas D, Baumann K, Heinrich K, Ruhland B, Sydow L, Gräfe K, Sattel T, Lüdtke-Buzug K, Buzug T (2012) Distribution of superparamagnetic nanoparticles in lymphatic tissue for sentinel lymph node detection in breast cancer by magnetic particle imaging. In: Buzug TM, Borgert J (eds) Magnetic particle imaging, SPPHY 140. Springer-Verlag, Berlin/Heidelberg, pp 187–191CrossRefGoogle Scholar
  38. Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1–3):10–17. CrossRefGoogle Scholar
  39. Frosina G (2016) Nanoparticle mediated drug delivery to high grade gliomas. Nanomed Nanotechnol Biol Med 12:1083–1093. CrossRefGoogle Scholar
  40. Fujiwara R, Luo Y, Sasaki T, Fujii K, Ohmori H, Kuniyasu H (2015) Cancer therapeutic effect of titanium dioxide nanoparticles are associated with oxidative stress and cytokine induction. Pathobiology 82:243–251. CrossRefGoogle Scholar
  41. Gao H (2016) Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B 6(4):268–286. CrossRefGoogle Scholar
  42. Gao J, Feng SS, Guo Y (2012) Nanomedicine against multidrug resistance in cancer treatment. Nanomedicine (Lond) 7:465–468. CrossRefGoogle Scholar
  43. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560. CrossRefGoogle Scholar
  44. Gerloff K, Landesmann B, Worth A, Munn S, Palosaari T, Whelan M (2017) The adverse outcome pathway approach in nanotoxicology. Comp Toxicol 1:3–11. CrossRefGoogle Scholar
  45. Gessner A, Waicz R, Lieske A, Paulke BR, Mader K, Muller RH (2000) Nanoparticles with decreasing surface hydrophobicities: influence on plasma protein adsorption. Int J Pharm 196:245–249. CrossRefGoogle Scholar
  46. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278:16–27. CrossRefGoogle Scholar
  47. Goel S, Chen F, Hong H, Valdovinos HF, Hernandez R, Shi S, Barnhart TE, Cai W (2014) VEGF121-Conjugated mesoporous silica nanoparticle: a tumor targeted drug delivery system. ACS Appl Mater Interfaces 6:21677–21685. CrossRefGoogle Scholar
  48. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation and cancer. Cell 140(6):883–899. CrossRefGoogle Scholar
  49. Groves E, Dart AE, Covarelli V, Caron E (2008) Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976. CrossRefGoogle Scholar
  50. Gubin SP (ed) (2009) Magnetic nanoparticles. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. CrossRefGoogle Scholar
  51. Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73. CrossRefGoogle Scholar
  52. Hagerling C, Casbon A-J, Werb Z (2015) Balancing the innate immune system in tumor development. Trends Cell Biol 25(4):214–220. CrossRefGoogle Scholar
  53. Hainfeld JF, Dilmanian EA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60(8):977–985. CrossRefGoogle Scholar
  54. Haltiwanger S (2014) Chapter 5. Why electroporation is a useful technique for cancer treatments? In: Sundarajan R (ed) Electroporation-based therapies for cancer: from basics to clinical applications. Elsevier & Woodhead Publishing, Amsterdam, pp 103–118, DOI: 978-907568-15-2 (print)CrossRefGoogle Scholar
  55. He J, Li S, Shao W, Wang D, Chen M, Yin W, Wang W, Gu Y, Zhong B (2010) Activated carbon nanoparticles or methylene blue as tracer during video-assisted thoracic surgery for lung cancer can help pathologist find the detected lymph nodes. J Surg Oncol 102(6):676–682. CrossRefGoogle Scholar
  56. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56, PMID:12098606CrossRefGoogle Scholar
  57. Hirakawa K, Hirano T (2006) Singlet oxygen generation photocatalyzed by TiO2 particles and its contribution to biomolecule damage. Chem Lett 35:832. CrossRefGoogle Scholar
  58. Hu R, Ma S, Li H et al (2011) Effect of magnetic fluid hyperthermia on lung cancer nodules in a murine model. Oncol Lett 2(6):1161–1164. CrossRefGoogle Scholar
  59. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT). Alex J Med 47:1–9. CrossRefGoogle Scholar
  60. Huang HS, Hainfeld JF (2013) Intravenous magnetic nanoparticle cancer hyperthermia. Int J Nanomed 8:2521–2532. Published online 2013 Jul 17. CrossRefGoogle Scholar
  61. Ishibashi KI, Nosaka Y, Hashimoto K, Fujishima A (1998) Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air. J Phys Chem B 102:2117–2120. CrossRefGoogle Scholar
  62. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in angiogenic therapy. Science 307:58–62. CrossRefGoogle Scholar
  63. James WD, Hirsch LR, West JL, O’Neal PD, Payne JD (2007) Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 271:455CrossRefGoogle Scholar
  64. Jiang XP, Elliot RL, Head JF (2010) Manipulation of iron transporter genes results in the suppression of human and mouse mammary adenocarcinomas. Anticancer Res 30:759–765, PMID 20392994Google Scholar
  65. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldöfner N, Scholz R, Jordan A, Loening SA, Wust P (2007a) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52(6):1653–1661. CrossRefGoogle Scholar
  66. Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldöfner N, Scholz R, Jung K, Jordan A, Wust P, Loening SA (2007b) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperth 23(3):315–323.BCrossRefGoogle Scholar
  67. Kamat PV (1985) Photoelectrochemistry in particulate systems. 3. Phototransformations in the colloidal titania-thiocyanate system. Langmuir 1:608–611. CrossRefGoogle Scholar
  68. Karlow W (2006) Pharmacogenetics and pharmacogenomics : origin, status and the hope for personalized medicine. Pharmacogenomics J 6:162–165. CrossRefGoogle Scholar
  69. Kessenbrock PV, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. CrossRefGoogle Scholar
  70. Khan S, Rizvi SM, Ahmad V, Baig MH, Kamal MA, Ahmad S, Rai M, Zafar Iqbal AN, Mushtaq G, Khan MS (2015) Magnetic nanoparticles: properties, synthesis and biomedical applications. Curr Drug Metab 16(8):685–704, PMID: 26264204CrossRefGoogle Scholar
  71. Kirschmann DA, Seftor EA, Hardy KM, Seftor REB, Hendrix MJC (2012) Molecular pathways: vasculogenic mimicry in tumor cells; diagnostic and therapeutic implications. Clin Cancer Res 18(10):2726–2732. CrossRefGoogle Scholar
  72. Knopik-Skrocka A, Kręplewska P, Jarmołowska-Jurczyszyn D (2017) Tumor blood vessels and vasculogenic mimicry – current knowledge and searching for new cellular/molecular targets of anti-angiogenic therapy. Adv Cell Biol 5(1):50–71. Retrieved 22 Jan 2018, from. CrossRefGoogle Scholar
  73. Kojima S, Negishi Y, Tsukimoto M, Takenouchi T, Kitani H, Takeda K (2014) Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle. Toxicology 321C:13–20. CrossRefGoogle Scholar
  74. Kouri FM, Hurley LA, Daniel WL, Day ES, Hua Y, Hao L, Peng C-Y, Merkel TJ, Queisser MA, Ritner C, Zhang H, James CD, Sznajder JI, Chin L, Giljohann DA, Kessler JA, Peter ME, Mirkin CA, Stegh AH (2015) miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev 29(7):732–745. CrossRefGoogle Scholar
  75. Krishnan SR, George SK (2014) Nanotherapeutics in cancer prevention, diagnosis and treatment, pharmacology and therapeutics In: Dr Gowder S (ed) InTech. Google Scholar
  76. Kubo W, Tatsuma T (2004) Detection of H2O2 released from TiO2 photocatalyst to air. Anal Sci 20:591–595, PMID: 15116953CrossRefGoogle Scholar
  77. Kuhn DA, Vanhecke D, Michen B, Blank F, Gehr P, Petri-Fink A, Rothen-Rutishauser B (2014) Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5:1625–1636. CrossRefGoogle Scholar
  78. Kuroda S, Tam J, Roth JA, Sokolov K, Ramesh R (2014) EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage. Int J Nanomed 9:3825–3839. CrossRefGoogle Scholar
  79. Landi GT (2013) Simple models for the heating curve in magnetic hyperthermia experiments. J Magn Magn Mater 326:14–21. CrossRefGoogle Scholar
  80. Larrañeta E, McCrudden MTC, Courtenay AJ, Donnelly RF (2016) Microneedles: a new frontier in nanomedicine delivery. Pharm Res 33:1055–1073. CrossRefGoogle Scholar
  81. Laschke MW, Elitzsch A, Vollmar BB, Vajkoczy P, Menger MD (2006) Combined inhibition of vascular endothelial growth factor (VEGF), fibroblast growth factor and platelet-derived growth factor, but not inhibition of VEGF alone, effectively suppresses angiogenesis and vessel maturation in endometriotic lesions. Hum Reprod 21(1):262–268. CrossRefGoogle Scholar
  82. Li X, Wang L, Fan Y, Feng Q, F-Z C (2012) Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. Google Scholar
  83. Li Z, Ao S, Bu Z, Wu A, Wu X, Shan F, Ji X, Zhang Y, Xing Z, Ji J (2016a) Clinical study of harvesting lymph nodes with carbon nanoparticles in advanced gastric cancer: a prospective randomized trial. World J Surg Oncol 24(14):88. CrossRefGoogle Scholar
  84. Li J, Tian M, Cui L, Dwyer J, Fullwood NJ, Shen H, Martin FL (2016b) Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation. Nat Sci Rep 6, Article number 20207, 11 pages.
  85. Liu Y, Cao X (2015) The origin and function of tumor associated macrophages. Cell Mol Immunol 12:1–4. CrossRefGoogle Scholar
  86. Liu Y, Lu WY (2012) Recent advances in brain tumor targeted nano-drug delivery systems. Expert Opin Drug Deliv 9:671–686. CrossRefGoogle Scholar
  87. Locatelli E, Naddaka M, Uboldi C, Loudos G, Fragogeorgi E, Molinari V, Pucci A, Tsotakos T, Psimadas D, Ponti J, Franchini MC (2014) Targeted delivery of silver nanoparticles and alisertib: in vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9(6):839–849. CrossRefGoogle Scholar
  88. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium Dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352, PMID: 16903269CrossRefGoogle Scholar
  89. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solid and powders: surface area, pore size and density. Kluwer Academic Publisher, Dordrecht, ISBN 1-4020-2302-2 (HB), ISBN 1-4020-2303-0 (e-book)CrossRefGoogle Scholar
  90. Lu W, Xiong C, Zhang G, Huang Q, Zhang R, Zhang JZ, Li C (2009) Targeted photothermal ablation of murine melanomas with melanocyte-stimulating hormone analog-conjugated hollow gold nanospheres. Clin Cancer Res 15:876. CrossRefGoogle Scholar
  91. Lu Y, Wei J-Y, Yao D-S, Pan Z-M, Yao Y (2017) Application of carbon nanoparticles in laparoscopic sentinel lymph node detection in patients with early-stage cervical cancer. De Re V (ed) PLoS One. 12(9):e0183834. CrossRefGoogle Scholar
  92. Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y (2016) In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics 6(11):1844–1865. CrossRefGoogle Scholar
  93. Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509. CrossRefGoogle Scholar
  94. Luo Y-L, Shiao Y-S, Huang Y-F (2011) Release of photoactivatable drugs from plasmonic nanoparticles for targeted cancer therapy. ACS Nano 5(10):7796–7804. CrossRefGoogle Scholar
  95. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47. CrossRefGoogle Scholar
  96. Ma P, Xiao H, Li C, Dai Y, Chen Z, Hou Z, Lin J (2015) Inorganic carriers for platinum drug-delivery. Mater Today 18(10):554–564. CrossRefGoogle Scholar
  97. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637. CrossRefGoogle Scholar
  98. Maisel K, Ensign L, Reddy M, Cone R, Hanes J (2015) Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. J Control Release 197:48–57. CrossRefGoogle Scholar
  99. Manke A, Wang L, Rojanasakul Y (2013) Mechanism of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int, Article ID 942916, 15 pages. CrossRefGoogle Scholar
  100. Marin E, Briceno MI, Caballero-George C (2013) Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomedicine 8:3071–3091. CrossRefGoogle Scholar
  101. McCarty MF, Barroso-Aranda J, Contreras F (2010) Oxidative stress therapy for solid tumors – a proposal. Med Hypotheses 74:1052–1054. CrossRefGoogle Scholar
  102. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189. CrossRefGoogle Scholar
  103. Meadows KL, Hurwitz HI (2012) Anti-VEGF therapies in the clinic. Cold Spring Harb Perspect Med 2(10):a006577. CrossRefGoogle Scholar
  104. Meddahi-Pellé A, Legrand A, Marcellan A, Louedec L, Letourneur D, Leibler L (2014) Organ repair, hemostasis, and in vivo bonding of medical devices by aqueous solutions of nanoparticles. Angew Chem Int Ed 53:6369–6373. CrossRefGoogle Scholar
  105. Melancon MP, Lu W, Yang Z, Zhang R, Cheng Z, Elliot AM, Stafford J, Olson T, Zhang JZ, Li C (2008) In vitro and in vivo targeting of hollow gold nanoshells directed at epidermal growth factor receptor for photothermal ablation therapy. Mol Cancer Ther 7(6):1730–1739. CrossRefGoogle Scholar
  106. Mendez R, Fernandes AR, Baptista BV (2017) Gold nanoparticle approach to the selective delivery of gene silencing in cancer – the case for combined delivery? Genes 8(94). CrossRefGoogle Scholar
  107. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738, PMID 14978070CrossRefGoogle Scholar
  108. Minelli C, Lowe SB, Stevens MM (2010) Engineering nanocomposite materials for cancer therapy. Small 6(21):2336–2357. CrossRefGoogle Scholar
  109. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, Dawson KA (2011) Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impact of nanoparticles. J Am Chem Soc 133:2525–2534. CrossRefGoogle Scholar
  110. Moosavi MA, Sharifi M, Ghafary SM, Mohammadalipour Z, Khataee A, Rahmati M, Hajjaran S, Los MJ, Klonisch T, Ghavami S (2016) Photodynamic N-TiO2 nanoparticle treatment induces controlled ROS-mediated autophagy and terminal differentiation of leukemia cells. Sci Rep 6, article number: 34413.
  111. Mukherjee P, Bhattacharya R, Wang P, Wang L, Basu S, Nagy JA, Atala A, Mukhopadhyay D, Soker S (2005) Antiangiogenic properties of gold nanoparticles. Clin Cancer Res 11(9):3530–3534. CrossRefGoogle Scholar
  112. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231. CrossRefGoogle Scholar
  113. Müller K, Fedosov DA, Gompper G (2014) Margination of micro- and nano-particles in blood flow and its effect on drug delivery. Sci Rep 4:4871. CrossRefGoogle Scholar
  114. Murakami Y, Kenji E, Nosaka AY, Nosaka Y (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110:16808–16811. CrossRefGoogle Scholar
  115. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at nanolevel. Science 311:622–627. CrossRefGoogle Scholar
  116. Nguyen VH, Lee B-J (2017) Protein corona: a new approach for nanomedicine design. Int J Nanomed 12:3137–3151. CrossRefGoogle Scholar
  117. Ni Y, Kan C, Gao Q, Wei J, Xu H, Wang C (2015) Heat generation and stability of a plasmonic nanogold system. J Phys D Appl Phys 49(5):055302. (9pp). CrossRefGoogle Scholar
  118. Nicomp 380 zeta potential user manual PSS-ZLSM-042106, 11/06Google Scholar
  119. Niwa I, Hiura Y, Sawamura H, Iwai N (2008) Inhalation exposure to carbon black induces inflammatory responses in rats. Circ J 72:144–149. CrossRefGoogle Scholar
  120. Norton L, Massagué J (2006) Is cancer a disease of self-seeding? Nat Med 12(8):875–878. CrossRefGoogle Scholar
  121. Nosaka Y, Daimon T, Nosaka AY, Murakami Y (2004) Singlet oxygen formation in photocatalytic TiO2 aqueous suspension. Phys Chem Chem Phys 6:2917–2918. CrossRefGoogle Scholar
  122. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176. CrossRefGoogle Scholar
  123. Oyarzun-Ampuero F, Guerrero A, Hassan-Lopez N, Morales JO, Bollo S, Corvalan A, Quest AFG, Kogan MJ (2015) Organic and inorganic nanoparticles for prevention and diagnosis of gastric cancer. Curr Pharm Design 21(29):145–154, PMID: 26323433Google Scholar
  124. Oyewumi MO, Liu S, Moscow JA, Mumper RJ (2003) Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjugate Chem 14(2):404–411. CrossRefGoogle Scholar
  125. Park E-J, Park K (2008) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184(2009):18–25. CrossRefGoogle Scholar
  126. Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, Park HJ, Kim C (2009) Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. J Mater Chem 16. CrossRefGoogle Scholar
  127. Park SY, Chae SY, Park JO, Lee K, Park G (2016) Gold-conjugated resveratrol nanoparticles attenuate the invasion and MMP-9 and COX-2 expression in breast cancer cells. Oncol Rep 35(6):3248–3256. CrossRefGoogle Scholar
  128. Peetla C, Vijayaraghavalu S, Labhasetwar V (2013) Biophysics of cell membrane lipids in cancer drug resistance: implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev 65(0). CrossRefGoogle Scholar
  129. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891. CrossRefGoogle Scholar
  130. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15(4):321–325, PMID: 15332593CrossRefGoogle Scholar
  131. Popescu T, Cremer L, Tudor M, AR Lupu (2016) ROS-mediated cytotoxicity and macrophage activation induced by TiO2 nanoparticles with Different in vitro non-cellular photocatalytic activities. South East Eur J Immunol, [S.l.] 2016:1–8. CrossRefGoogle Scholar
  132. Pouw JJ, Ahmed M, Anninga B, Schuurman K, Pinder SE, Van Hemelrijck M, Pankhurst QA, Douek M, ten Haken B (2015) Comparison of three magnetic nanoparticle tracers for sentinel lymph node biopsy in an in vivo porcine model. Int J Nanomed 10:1235–1243. CrossRefGoogle Scholar
  133. Prado-García H, Sánchez-García FJ (2017) Immuno-metabolism in tumor microenvironment. Front Immunol 8, Article 374.
  134. Pramanik M, Song KH, Swierczewska M, Green D, Sitharaman B, Wang LV (2009) In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. Phys Med Biol. 54(11):3291–3301. CrossRefGoogle Scholar
  135. Qian Y, Qiu M, Wu Q, Tian Y, Zhang Y, Gu N, Li S, Xu L, Yin R (2014) Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci Rep 4, Article number 7490.
  136. Rahman M, Laurent S, Tawil N, Yahia L, Mahmoudi M (2013) Protein-nanoparticle interactions. The bio-nano interface. Springer, X 84p 24 illus, 20 illus, hardcover, ISBN: 978-3-642-37554-5Google Scholar
  137. Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behaviour. Biomaterials 22(12):1467–1474, PMID:11374445 CrossRefGoogle Scholar
  138. Rau JL (2005) The inhalation of drugs, advantages and problems. Respir Care 5(3):367–382, PMID:15737247Google Scholar
  139. Reddy L, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. CrossRefGoogle Scholar
  140. Rocha-Lima CM, Soares HP, Raez LE, Singal R (2007) EGFR targeting of solid tumors. Cancer Control 14(3):295–304. CrossRefGoogle Scholar
  141. Roma-Rodrigues C, Raposo LR, Cabral R, Paradinha F, Baptista PV, Fernandes AR (2017) Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: implications for cancer diagnostics and therapy. Int J Mol Sci 18:162. CrossRefGoogle Scholar
  142. Rose S, Prevoteau A, Elzière P, Hourdet D, Marcellan A, Leibler L (2014) Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505:382–385. CrossRefGoogle Scholar
  143. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374. CrossRefGoogle Scholar
  144. Rothenberger G, Moser J, Graetzel M, Serpone N, Sharma DK (1985) Charge carrier trapping and recombination dynamics in small semiconductor particles. J Am Chem Soc 107(36):8054–8059CrossRefGoogle Scholar
  145. Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T (2009) A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett 9(9):3337–3342. CrossRefGoogle Scholar
  146. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Control Release 235:34–47. CrossRefGoogle Scholar
  147. Sasaki T, Hiroki K, Yamashita Y (2013) The role of epidermal growth factor receptor in cancer metastasis and microenvironment. Biomed Res Int 2013:546318. CrossRefGoogle Scholar
  148. Schneider CS, Xu Q, Boylan NJ, Chisholm J, Tang BC, Schuster BS, Henning A, Ensign LM, Lee E, Adstamongkonkul P, Simons BW, Wang S-Y S, Gong X, Yu T, Boyle MP, Suk JS, Hanes J (2017) Nanoparticles that do not adhere to mucus provide uniform and long-lasting delivery to airways following inhalation. Sci Adv 3:e1601556. CrossRefGoogle Scholar
  149. Schuster TM (2000) On-line biophysics textbook, volume: separations and hydrodynamics, chapter 1 – survey of biomolecular hydrodynamics.
  150. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219(4587):983–985, PMID:6823562CrossRefGoogle Scholar
  151. Sershen SR, Westcott SL, West JL, Halas NJ (2001) An opto-mechanical nanoshell–polymer composite. Appl Phys B 73:379–381. CrossRefGoogle Scholar
  152. Sharma A, Madhunapantula SRV, Robertson GP (2013) Toxicological considerations when creating nanoparticle based drugs and drug delivery systems? Expert Opin Drug Metab Toxicol 8(1):47–69. CrossRefGoogle Scholar
  153. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, Bhatia SN, Sailor M, Rouslahti E (2009) Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials 30:3926–3933. CrossRefGoogle Scholar
  154. Singh AK (2015) Engineered nanoparticles, structure, properties and mechanisms of toxicity. In: Chapter 6: nanoparticle pharmacokinetics and toxicokinetics. Academic Press, Amsterdam, pp 230–296Google Scholar
  155. Smith L, Kuncik Z, Ostrikov K, Kumar S (2012) Nanoparticles in cancer imaging and therapy. J Nanomater, Article ID 891318, 7 pages. CrossRefGoogle Scholar
  156. Solanki A, Kim JD, Lee K-B (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3(4):567–578. CrossRefGoogle Scholar
  157. Spiliopoulos K, Peschos D, Batistatou A, Ntountas I, Agnantis N, Kitsos G (2015) Vasculogenic mimicry: lessons from melanocytic tumors. In Vivo 29(3):309–317, PMID: 25977376Google Scholar
  158. Steinman RM, Mellman I (2004) Immunotherapy: bewitched, bothered and bewildered no more. Science 305:197–200. CrossRefGoogle Scholar
  159. Szabo E (2006) Selecting targets for cancer prevention: where do we go from here, nature reviews. Cancer 6:867–874. CrossRefGoogle Scholar
  160. Takanashi S, Hara K, Aoki K, Usui Y, Shimizu M, Haniu H et al (2012) Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep 2:498. CrossRefGoogle Scholar
  161. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E (2011) Effect of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22(11):115101, PMCID: PMC3530262CrossRefGoogle Scholar
  162. Toy R, Peiris PM, Ghaghada KB, Karathanasis E (2014) Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicines (Lond) 9(1):121–134. CrossRefGoogle Scholar
  163. Uchechi O, Ogbonna JDN, Attama AA (2014) Nanoparticles or dermal and transdermal drug delivery, application of nanotechnology in drug delivery. InTech:193–235. Google Scholar
  164. Vallée A, Guillevin R, Vallée J-N (2018) Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/β-catenin pathway in gliomas. Rev Neurosci 29(1):71–91. CrossRefGoogle Scholar
  165. van der Vos KE, Balaj L, Skog J, Breakefield XO (2011) Brain tumor microvesicles: insights into intercellular communication in the nervous system. Cell Mol Neurobiol 31(6):949–959. CrossRefGoogle Scholar
  166. van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, Macleod MR (2010) Can animal models of disease reliably inform human studies? PLoS One 7(3):e1000245. CrossRefGoogle Scholar
  167. Verma P, Thakur AS, Deshmukh K, Jha AK, Verma S (2010) Routes of drug administration. IJPSR 1(1):54–59, E-ISSN 2229-4619Google Scholar
  168. Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular weight kininogen, factor-Xii, and fibrinogen in plasma at interfaces. Blood 55:156–159, PMID:7350935CrossRefGoogle Scholar
  169. Wang B, He X, Zhang Z, Zhao Y, Feng W (2012a) Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46(3):761–769. CrossRefGoogle Scholar
  170. Wang X, Guo J, Chen T, Nie H, Wang H, Zang J et al (2012b) Multi-walled carbon nanotubes induce apoptosis via mitochondrial pathway and scavenger receptor. Toxicol In Vitro 26:799–806. CrossRefGoogle Scholar
  171. Wang Y, Huang H-Y, Yang L, Zhang Z, Ji H (2016) Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep 6, article number 25468.
  172. Wangeblast E, Soto M, Gutièrrez-Angel HCA, Gable AL, Macell AR, Erard N, Wlliams AM, Kim SY, Dickopf S, Harrell JC, Smith AD, Perou CM, Wilkinson JE, Hannon GJ, Knott SRV (2015) A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature 520:358–362. CrossRefGoogle Scholar
  173. Weinstein IB, Joe AK (2006) Mechanisms of Disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3(8):448–457. CrossRefGoogle Scholar
  174. Weissleder R, Nahrendorf M, Pittet MJ (2014) Imaging macrophages with nanoparticles. Nat Mater 13:125–138. CrossRefGoogle Scholar
  175. Widakowich C, de Gastro G Jr, de Azambyra E, Dinh P, Awada A (2007) Side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455. CrossRefGoogle Scholar
  176. Wildeboer RR, Southern P, Pankhurst QA (2014) On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. J Phys D Appl Phys 47(49):14CrossRefGoogle Scholar
  177. Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29:2941–2953. CrossRefGoogle Scholar
  178. Wimpenny I, Markides H, El Haj AJ (2012) Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Therapy 3:13. CrossRefGoogle Scholar
  179. Winkler HC, Suter M, Naegeli H (2016) Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnol 14:44. CrossRefGoogle Scholar
  180. Winter M, Beer H-D, Hornung V, Krämer U, Schins RFP, Förster I (2011) Activation of the inflammasome by the amorphous silica and TiO2 nanoparticles in murine dendritic cells. Nanotoxicology 5:326–340. CrossRefGoogle Scholar
  181. Winter A, Woekhaus J, Wawoschek F (2014) A novel method for intraoperative sentinel lymph node detection in prostate cancer patients using superparamagnetic iron oxide nanoparticles and a handheld magnetometer: the initial clinical experience. Ann Surg Oncol 21:4390–4396. CrossRefGoogle Scholar
  182. World Health Organization, Media Centre, Cancer, February (2017). Accessed 17 Jan 2017
  183. Wu X, Lin Q, Chen G, Lu J, Zeng Y, Chen X, Yan J (2015) Sentinel lymph node detection using carbon nanoparticles in patients with early breast cancer. PLoS One 10(8):e0135714. CrossRefGoogle Scholar
  184. Xie J, Pan X, Wang M, Yao L, Liang X, Ma J, Fei Y, Wang PN, Lan M (2016) Targeting and photodynamic killing of cancer cell by nitrogen-doped titanium dioxide coupled with folic acid. Nanomaterials 6:113. CrossRefGoogle Scholar
  185. Xu XF, Gu J (2016) The application of carbon nanoparticles in the lymph node biopsy of cN0 papillary thyroid carcinoma: a randomized controlled clinical trial. Asian J Surg. CrossRefGoogle Scholar
  186. Yan J, Xue F, Chen H, Wu X, Zhang H, Chen G, Lu J, Cai L, Xiang G, Deng Z, Zheng Y, Zheng X, Li G (2014) A multi-center study of using carbon nanoparticles to track lymph node metastasis in T1-2 colorectal cancer. Surg Endosc 28(12):3315–3321. CrossRefGoogle Scholar
  187. Yao C, Zhang L, Wang J, He Y, Xin J, Wang S, Xu H, Zhang Z (2016) Gold nanoparticle mediated phototherapy for cancer, Hindawi Publishing Corporation. J Nanomater, Article ID 5497136, 29 pages, Google Scholar
  188. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Toxicology and clinical potential of nanoparticles. NanoToday 6(6):585–607. CrossRefGoogle Scholar
  189. Yokoyama T, Tam J, Kuroda S, et al (2011) EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells. Basu S (ed) PLoS One 6(11):e25507. CrossRefGoogle Scholar
  190. You DG, Deepagan VG, Um W, Jeon S, Son S, Chang H, Yoon HI, Cho YW, Swierczewska M, Lee S, Pomper MG, Kwon IC, Kim K, Park JH (2016) ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep 6, Article number 23200.
  191. Yu W, Cao XL, Xu G, Song Y, Li G, Zheng H (2016) Potential role for carbon nanoparticles to guide central neck dissection in patients with papillary thyroid cancers. Surgery 160(3):755–761. CrossRefGoogle Scholar
  192. Zhang A-P, Sun Y-P (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10(21):3191–3193, PMID: 15457572CrossRefGoogle Scholar
  193. Zhang XD, Wu D, Shen X, Liu P-X, Yang N, Zhao B, Zhang H, Sun Y-M, Zhang L-A, Fan F-Y (2011a) Size dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 6:2071–2081. CrossRefGoogle Scholar
  194. Zhang XQ, Lam R, Xu X, Chow EK, Kim HJ, Ho D (2011b) Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater 23(41):4770–4775. [PubMed: 21932280] 28CrossRefGoogle Scholar
  195. Zhang Y, Deng J, Zhang Y, Guo F, Li C, Zou Z et al (2013) Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. J Mol Med (Berl) 91(1):117–128. CrossRefGoogle Scholar
  196. Zhang L, Li Y, Yu JC (2014) Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem 2:452. CrossRefGoogle Scholar
  197. Zitoogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreea-Roxana Lupu
    • 1
    • 2
  • Traian Popescu
    • 3
  • Marko Stojanović
    • 4
  1. 1.Immunology Laboratory“Cantacuzino” National Medico – Military Institute for Research and DevelopmentBucharestRomania
  2. 2.Immunobiology Laboratory, Assay Development and Alternative Studies Department“Victor Babes” National Research Institute of PathologyBucharestRomania
  3. 3.Laboratory of Atomic Structure and Defects in Advanced MaterialsNational Institute of Materials PhysicsMagureleRomania
  4. 4.Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations