Advertisement

Earth Movers’ Stochastic Conformance Checking

  • Sander J. J. LeemansEmail author
  • Anja F. Syring
  • Wil M. P. van der Aalst
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 360)

Abstract

Process Mining aims to support Business Process Management (BPM) by extracting information about processes from real-life process executions recorded in event logs. In particular, conformance checking aims to measure the quality of a process model by quantifying differences between the model and an event log or another model. Even though event logs provide insights into the likelihood of observed behaviour, most state-of-the-art conformance checking techniques ignore this point of view. In this paper, we propose a conformance measure that considers the stochastic characteristics of both the event log and the process model. It is based on the “earth movers’ distance” and measures the effort to transform the distributions of traces of the event log into the distribution of traces of the model. We formalize this intuitive conformance metric and provide an approximation and a simplified variant. The latter two have been implemented in ProM and we evaluate them using several real-life examples.

Keywords

Stochastic process mining Stochastic conformance checking Stochastic languages Stochastic Petri nets 

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    Berkelaar, M., Eikland, K., Notebaert, P.: lp\(\_\)solve 5.5. Software, 1 May 2004Google Scholar
  3. 3.
    Cabasino, M.P., Hadjicostis, C.N., Seatzu, C.: Probabilistic marking estimation in labeled Petri nets. IEEE Trans. Autom. Control 60(2), 528–533 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99414-7CrossRefGoogle Scholar
  5. 5.
    Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic process underlying a stochastic Petri net. IEEE TSE 20(7), 506–515 (1994)Google Scholar
  6. 6.
    Conforti, R., Fink, S., Manderscheid, J., Röglinger, M.: PRISM - a predictive risk monitoring approach for business processes. In: BPM, pp. 383–400 (2016)Google Scholar
  7. 7.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005).  https://doi.org/10.1007/11494744_25CrossRefGoogle Scholar
  8. 8.
    van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19069-3_19CrossRefGoogle Scholar
  9. 9.
    Koorneef, M., Solti, A., Leopold, H., Reijers, H.A.: Automatic root cause identification using most probable alignments. In: BPM Workshops, pp. 204–215 (2017)CrossRefGoogle Scholar
  10. 10.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  11. 11.
    de Meer, H., Düsterhöft, O.: Controlled stochastic Petri nets. In: SRDS, pp. 18–25 (1997)Google Scholar
  12. 12.
    Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_2CrossRefGoogle Scholar
  13. 13.
    Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)CrossRefGoogle Scholar
  14. 14.
    Rozinat, A.: Process mining: conformance and extension. Ph.D. thesis, Eindhoven University of Technology (2010)Google Scholar
  15. 15.
    Ru, Y., Hadjicostis, C.N.: Bounds on the number of markings consistent with label observations in Petri nets. IEEE Trans. Autom. Sci. Eng. 6(2), 334–344 (2009)CrossRefGoogle Scholar
  16. 16.
    Rüschendorf, L.: The Wasserstein distance and approximation theorems. Probab. Theory Relat. Fields 70(1), 117–129 (1985)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sierksma, G.: Linear and Integer Optimization: Theory and Practice. Chapman & Hall/CRC, Boca Raton (2015)CrossRefGoogle Scholar
  18. 18.
    Trivedi, K.S., Puliafito, A., Logothetis, D.: From stochastic Petri nets to Markov regenerative stochastic Petri nets. In: MASCOTS, pp. 194–198 (1995)Google Scholar
  19. 19.
    Tuffin, B., Chen, D.S., Trivedi, K.S.: Comparison of hybrid systems and fluid stochastic Petri nets. Discrete Event Dyn. Syst. 11(1–2), 77–95 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Verenich, I., Dumas, M., Rosa, M.L., Maggi, F.M., Teinemaa, I.: Survey and cross-benchmark comparison of remaining time prediction methods in business process monitoring. CoRR 1805.02896 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sander J. J. Leemans
    • 1
    Email author
  • Anja F. Syring
    • 2
  • Wil M. P. van der Aalst
    • 2
  1. 1.Queensland University of TechnologyBrisbaneAustralia
  2. 2.Process and Data Science (Informatik 9)RWTH Aachen UniversityAachenGermany

Personalised recommendations