Skip to main content

Non-linear Autoregressive Neural Networks to Forecast Short-Term Solar Radiation for Photovoltaic Energy Predictions

  • Conference paper
  • First Online:
Smart Cities, Green Technologies and Intelligent Transport Systems (SMARTGREENS 2018, VEHITS 2018)

Abstract

Nowadays, green energy is considered as a viable solution to hinder \( CO_{2} \) emissions and greenhouse effects. Indeed, it is expected that Renewable Energy Sources (RES) will cover \( 40\% \) of the total energy request by 2040. This will move forward decentralized and cooperative power distribution systems also called smart grids. Among RES, solar energy will play a crucial role. However, reliable models and tools are needed to forecast and estimate with a good accuracy the renewable energy production in short-term time periods. These tools will unlock new services for smart grid management.

In this paper, we propose an innovative methodology for implementing two different non-linear autoregressive neural networks to forecast Global Horizontal Solar Irradiance (GHI) in short-term time periods (i.e. from future 15 to 120 min). Both neural networks have been implemented, trained and validated exploiting a dataset consisting of four years of solar radiation values collected by a real weather station. We also present the experimental results discussing and comparing the accuracy of both neural networks. Then, the resulting GHI forecast is given as input to a Photovoltaic simulator to predict energy production in short-term time periods. Finally, we present the results of this Photovoltaic energy estimation discussing also their accuracy.

This work was partially supported by the Italian project “Edifici a Zero Consumo Energetico in Distretti Urbani Intelligenti”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghaei, J., Alizadeh, M.I.: Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)

    Article  Google Scholar 

  2. Aliberti, A., Bottaccioli, L., Cirrincione, G., Macii, E., Acquaviva, A., Patti, E.: Forecasting short-term solar radiation for photovoltaic energy predictions. In: Proceedings of the 7th International Conference on Smart Cities and Green ICT Systems - Volume 1: SMARTGREENS, pp. 44–53. INSTICC, SciTePress (2018). https://doi.org/10.5220/0006683600440053

  3. Badescu, V.: Modeling Solar Radiation at the Earth’s Surface. Springer, Heidelberg (2014)

    Google Scholar 

  4. Bottaccioli, L., Estebsari, A., Patti, E., Pons, E., Acquaviva, A.: A novel integrated real-time simulation platform for assessing photovoltaic penetration impacts in smart grids. Energy Procedia 111, 780–789 (2017)

    Article  Google Scholar 

  5. Bottaccioli, L., et al.: A flexible distributed infrastructure for real-time cosimulations in smart grids. IEEE Trans. Industr. Inf. 13(6), 3265–3274 (2017)

    Article  Google Scholar 

  6. Bottaccioli, L., Patti, E., Macii, E., Acquaviva, A.: GIS-based software infrastructure to model PV generation in fine-grained spatio-temporal domain. IEEE Syst. J. 12(3), 2832–2841 (2017)

    Article  Google Scholar 

  7. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  8. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29854-2

    Book  MATH  Google Scholar 

  9. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40(1), 16–28 (2014)

    Article  Google Scholar 

  10. Cohn, D.A.: Neural network exploration using optimal experiment design. In: Advances in Neural Information Processing Systems, pp. 679–686 (1994)

    Google Scholar 

  11. Connor, J., Atlas, L.E., Martin, D.R.: Recurrent networks and NARMA modeling. In: Advances in Neural Information Processing Systems, pp. 301–308 (1992)

    Google Scholar 

  12. Demuth, H.B., Beale, M.H., De Jess, O., Hagan, M.T.: Neural Network Design. Martin Hagan (2014)

    Google Scholar 

  13. Dickinson, E.: Solar Energy Technology Handbook. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  14. Expósito, A.G., Conejo, A.J., Canizares, C.: Electric Energy Systems: Analysis and Operation. CRC Press, Boca Raton (2016)

    Google Scholar 

  15. Gueymard, C.A.: A review of validation methodologies and statistical performance indicators for modeled solar radiation data: towards a better bankability of solar projects. Renew. Sustain. Energy Rev. 39, 1024–1034 (2014)

    Article  Google Scholar 

  16. Hamilton, J.D.: Time Series Analysis, vol. 2. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  17. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

    Google Scholar 

  18. Hansen, L.K., Pedersen, M.W.: Controlled growth of cascade correlation nets. In: Marinaro, M., Morasso, P.G. (eds.) ICANN 1994, pp. 797–800. Springer, London (1994). https://doi.org/10.1007/978-1-4471-2097-1_189

    Chapter  Google Scholar 

  19. Haykin, S., Network, N.: A comprehensive foundation. Neural Netw. 2(2004), 41 (2004)

    Google Scholar 

  20. He, X., Asada, H.: A new method for identifying orders of input-output models for nonlinear dynamic systems. In: American Control Conference, pp. 2520–2523. IEEE (1993)

    Google Scholar 

  21. Hosenuzzaman, M., Rahim, N., Selvaraj, J., Hasanuzzaman, M., Malek, A., Nahar, A.: Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sustain. Energy Rev. 41, 284–297 (2015)

    Article  Google Scholar 

  22. Kaplanis, S., Kaplani, E.: Stochastic prediction of hourly global solar radiation profiles (2016)

    Google Scholar 

  23. Kubat, M.: Artificial neural networks. In: Kubat, M. (ed.) An Introduction to Machine Learning, pp. 91–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63913-0_5

    Chapter  MATH  Google Scholar 

  24. Legates, D.R., McCabe, G.J.: A refined index of model performance: a rejoinder. Int. J. Climatol. 33(4), 1053–1056 (2013)

    Article  Google Scholar 

  25. Madanchi, A., Absalan, M., Lohmann, G., Anvari, M., Tabar, M.R.R.: Strong short-term non-linearity of solar irradiance fluctuations. Sol. Energy 144, 1–9 (2017)

    Article  Google Scholar 

  26. Makridakis, S., Wheelwright, S.C.: Adaptive filtering: an integrated autoregressive/moving average filter for time series forecasting. J. Oper. Res. Soc. 28(2), 425–437 (1977)

    Article  Google Scholar 

  27. Mandic, D.P., Chambers, J.A., et al.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, Hoboken (2001)

    Book  Google Scholar 

  28. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: ICGA, vol. 89, pp. 379–384 (1989)

    Google Scholar 

  29. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to Time Series Analysis and Forecasting. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  30. Nazaripouya, H., Wang, B., Wang, Y., Chu, P., Pota, H., Gadh, R.: Univariate time series prediction of solar power using a hybrid wavelet-ARMA-NARX prediction method. In: 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), pp. 1–5. IEEE (2016)

    Google Scholar 

  31. Norgaard, M., Ravn, O., Poulsen, N.K.L.: NNSYSID-toolbox for system identification with neural networks. Math. Comput. Model. Dyn. Syst. 8(1), 1–20 (2002)

    Article  Google Scholar 

  32. Norgaard, P.M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Modelling and Control of Dynamic Systems-A Practitioner’s Handbook (2000)

    Google Scholar 

  33. Oancea, B., Ciucu, Ş.C.: Time series forecasting using neural networks. arXiv preprint arXiv:1401.1333 (2014)

  34. Qazi, A., Fayaz, H., Wadi, A., Raj, R.G., Rahim, N., Khan, W.A.: The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review. J. Clean. Prod. 104, 1–12 (2015)

    Article  Google Scholar 

  35. Rahimi-Eichi, H., Ojha, U., Baronti, F., Chow, M.Y.: Battery management system: an overview of its application in the smart grid and electric vehicles. IEEE Ind. Electron. Mag. 7(2), 4–16 (2013)

    Article  Google Scholar 

  36. Rajakaruna, S., Shahnia, F., Ghosh, A.: Plug in Electric Vehicles in Smart Grids. Springer, Singapore (2016)

    Google Scholar 

  37. Rajamani, R.: Observers for lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)

    Article  MathSciNet  Google Scholar 

  38. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1–7. Springer, Boston (2016)

    Google Scholar 

  39. Siano, P.: Demand response and smart grids–a survey. Renew. Sustain. Energy Rev. 30, 461–478 (2014)

    Article  Google Scholar 

  40. Siegelmann, H.T., Horne, B.G., Giles, C.L.: Computational capabilities of recurrent NARX neural networks. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 27(2), 208–215 (1997)

    Article  Google Scholar 

  41. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Tealab, A., Hefny, H., Badr, A.: Forecasting of nonlinear time series using artificial neural network. Future Comput. Inf. J. 2(1), 39–47 (2017)

    Article  Google Scholar 

  43. Thimm, G., Fiesler, E.: Pruning of neural networks. Technical report, IDIAP (1997)

    Google Scholar 

  44. Vardakas, J.S., Zorba, N., Verikoukis, C.V.: A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun. Surv. Tutor. 17(1), 152–178 (2015)

    Article  Google Scholar 

  45. Voyant, C., Darras, C., Muselli, M., Paoli, C., Nivet, M.L., Poggi, P.: Bayesian rules and stochastic models for high accuracy prediction of solar radiation. Appl. Energy 114, 218–226 (2014)

    Article  Google Scholar 

  46. Voyant, C., et al.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  47. Weckx, S., Driesen, J.: Load balancing with EV chargers and PV inverters in unbalanced distribution grids. IEEE Trans. Sustain. Energy 6(2), 635–643 (2015)

    Article  Google Scholar 

  48. Weigend, A.S.: Time Series Prediction: Forecasting the Future and Understanding the Past. Routledge, Abingdon (2018)

    Book  Google Scholar 

  49. Willmott, C.J., Robeson, S.M., Matsuura, K.: A refined index of model performance. Int. J. Climatol. 32(13), 2088–2094 (2012)

    Article  Google Scholar 

  50. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  51. Xing, H., Fu, M., Lin, Z., Mou, Y.: Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids. IEEE Trans. Power Syst. 31(5), 4118–4127 (2016)

    Article  Google Scholar 

  52. Yadav, A.K., Chandel, S.: Solar radiation prediction using artificial neural network techniques: a review. Renew. Sustain. Energy Rev. 33, 772–781 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Computational resources were provided by HPC@POLITO, a project of Academic Computing within the Department of Control and Computer Engineering at the Politecnico di Torino (http://www.hpc.polito.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Patti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aliberti, A., Bottaccioli, L., Cirrincione, G., Macii, E., Acquaviva, A., Patti, E. (2019). Non-linear Autoregressive Neural Networks to Forecast Short-Term Solar Radiation for Photovoltaic Energy Predictions. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O. (eds) Smart Cities, Green Technologies and Intelligent Transport Systems. SMARTGREENS VEHITS 2018 2018. Communications in Computer and Information Science, vol 992. Springer, Cham. https://doi.org/10.1007/978-3-030-26633-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26633-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26632-5

  • Online ISBN: 978-3-030-26633-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics