Advertisement

Modeling and Enforcing Blockchain-Based Choreographies

  • Jan LadleifEmail author
  • Mathias Weske
  • Ingo Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11675)

Abstract

Distributed Ledger Technology (DLT) and blockchains in particular have been identified as promising foundations to realize inter-organizational business processes. Capabilities such as shared data and decision logic defined as smart contracts open up entirely new ways to implement process choreographies. However, current choreography modeling languages solely focus on direct interactions between organizations; they do not take into account the conceptually new features of blockchains, like shared data and smart contracts. To bridge the gap between choreography modeling and implementation, this paper critically analyzes the assumptions of choreography languages. We propose new language concepts specifically targeting blockchain capabilities, and we define their operational semantics. Our work is evaluated with a proof-of-concept implementation and an analysis of three real-world case studies from the private and the corporate sectors.

Keywords

Choreography Blockchain Interacting processes BPMN 

References

  1. 1.
    Breu, R., et al.: Towards living inter-organizational processes. In: IEEE Conference on Business Informatics (CBI) (2013)Google Scholar
  2. 2.
    García-Bañuelos, L., Ponomarev, A., Dumas, M., Weber, I.: Optimized execution of business processes on blockchain. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 130–146. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65000-5_8CrossRefGoogle Scholar
  3. 3.
    Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G., Xu, X.: On legal contracts, imperative and declarative smart contracts, and blockchain systems. Artif. Intell. Law 26(4), 377–409 (2018).  https://doi.org/10.1007/s10506-018-9223-3. ISSN 1572-8382CrossRefGoogle Scholar
  4. 4.
    Haarmann, S., Batoulis, K., Nikaj, A., Weske, M.: DMN decision execution on the ethereum blockchain. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 327–341. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91563-0_20CrossRefGoogle Scholar
  5. 5.
    Kõlvart, M., Poola, M., Rull, A.: Smart contracts. In: Kerikmäe, T., Rull, A. (eds.) The Future of Law and eTechnologies, pp. 133–147. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-26896-5_7CrossRefGoogle Scholar
  6. 6.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I.: Caterpillar: a blockchain-based business process management system. In: International Conference on Business Process Management (BPM), Demo Track (2017)Google Scholar
  7. 7.
    López-Pintado, O., García-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.: Caterpillar: a business process execution engine on the Ethereum blockchain. CoRR abs/1808.03517 (2018)Google Scholar
  8. 8.
    Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.: Collaboration among adversaries: distributed workflow execution on a blockchain. In: Symposium on Foundations and Applications of Blockchain (2018)Google Scholar
  9. 9.
    Mendling, J., Weber, I., et al.: Blockchains for business process management - challenges and opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 41–416 (2018).  https://doi.org/10.1145/3183367. ISSN 2158-656XCrossRefGoogle Scholar
  10. 10.
    Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data exchange in process choreographies. Inf. Sys. 53, 296–329 (2015)CrossRefGoogle Scholar
  11. 11.
    Meyer, A., et al.: Data perspective in process choreographies: modeling and execution. Technical report BPM-13-29, BPMcenter.org (2013)
  12. 12.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  13. 13.
    OMG: Business Process Model and Notation (BPMN), Version 2.0.2, December 2013. http://www.omg.org/spec/BPMN/2.0.2/
  14. 14.
    Staples, M., et al.: Risks and opportunities for systems using blockchain and smart contracts. Technical report, Data61 (CSIRO) (2017)Google Scholar
  15. 15.
    Sturm, C., Szalanczi, J., Schönig, S., Jablonski, S.: A lean architecture for blockchain based decentralized process execution. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 361–373. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11641-5_29CrossRefGoogle Scholar
  16. 16.
    Tran, A.B., Lu, Q., Weber, I.: Lorikeet: a model-driven engineering tool for blockchain-based business process execution and asset management. In: International Conference on Business Process Management (BPM), Demo Track (2018)Google Scholar
  17. 17.
    Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.: Untrusted business process monitoring and execution using blockchain. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_19CrossRefGoogle Scholar
  18. 18.
    Weske, M.: Business Process Management, 2nd edn. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28616-2CrossRefGoogle Scholar
  19. 19.
    Xu, X., Weber, I., Staples, M.: Architecture for Blockchain Applications. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-03035-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  2. 2.Technische Universität BerlinBerlinGermany

Personalised recommendations