Mining Process Mining Practices: An Exploratory Characterization of Information Needs in Process Analytics

  • Christopher KlinkmüllerEmail author
  • Richard Müller
  • Ingo Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11675)


Many business process management activities benefit from the investigation of event data. Thus, research, foremost in the field of process mining, has focused on developing appropriate analysis techniques, visual idioms, methodologies, and tools. Despite the enormous effort, the analysis process itself can still be fragmented and inconvenient: analysts often apply various tools and ad-hoc scripts to satisfy information needs. Therefore, our goal is to better understand the specific information needs of process analysts. To this end, we characterize and examine domain problems, data, analysis methods, and visualization techniques associated with visual representations in 71 analysis reports. We focus on the representations, as they are of central importance for understanding and conveying information derived from event data. Our contribution lies in the explication of the current state of practice, enabling the evaluation of existing as well as the creation of new approaches and tools against the background of actual, practical needs.


Process mining Visual analytics Qualitative content analysis 


  1. 1.
    Ailenei, I., Rozinat, A., Eckert, A., van der Aalst, W.M.P.: Definition and validation of process mining use cases. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 75–86. Springer, Heidelberg (2012). Scholar
  2. 2.
    Augusto, A., Conforti, R., Dumas, M., La Rosa, M.: Split miner: discovering accurate and simple business process models from event logs. In: ICDM, pp. 1–10 (2017)Google Scholar
  3. 3.
    Bozkaya, M., Gabriels, J., van der Werf, J.: Process diagnostics: a method based on process mining. In: eKNOW, pp. 22–27 (2009)Google Scholar
  4. 4.
    Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Heidelberg (2013). Scholar
  5. 5.
    García-Bañuelos, L., van Beest, N., Dumas, M., La Rosa, M., Mertens, W.: Complete and interpretable conformance checking of business processes. IEEE Trans. Softw. Eng. 44, 262–290 (2017)CrossRefGoogle Scholar
  6. 6.
    Isenberg, P., Zuk, T., Collins, C., Carpendale, S.: Grounded evaluation of information visualizations. In: Workshop on Beyond Time and Errors: Novel Evaluation Methods for Information Visualization, pp. 6:1–6:8 (2008)Google Scholar
  7. 7.
    Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., Melançon, G.: Visual analytics: definition, process, and challenges. In: Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Heidelberg (2008). Scholar
  8. 8.
    Krippendorff, K.: Content Analysis: An Introduction to Its Methodology, 2nd edn. Sage Publications, Thousand Oaks (2004)Google Scholar
  9. 9.
    Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-structured process models from event logs - a constructive approach. In: Petri Nets, pp. 311–329 (2013)CrossRefGoogle Scholar
  10. 10.
    Martens, J., Verheul, P.: Social performance review of 5 Dutch municipalities: future fit cases for outsourcing? In: BPI (2015)Google Scholar
  11. 11.
    Mayring, P.: Qualitative content analysis. Forum Qual. Soc. Res. 1(2) (2000). Article no. 20Google Scholar
  12. 12.
    Meyer, M., Sedlmair, M., Munzner, T.: The four-level nested model revisited: blocks and guidelines. In: BELIV, pp. 11:1–11:6 (2012)Google Scholar
  13. 13.
    Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009) CrossRefGoogle Scholar
  14. 14.
    Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)CrossRefGoogle Scholar
  15. 15.
    Nguyen, H., Dumas, M., La Rosa, M., ter Hofstede, A.H.M.: Multi-perspective comparison of business process variants based on event logs. In: Trujillo, J.C., et al. (eds.) ER 2018. LNCS, vol. 11157, pp. 449–459. Springer, Cham (2018). Scholar
  16. 16.
    Recker, J.: Scientific Research in Information Systems: A Beginner’s Guide. Springer, Berlin (2013). Scholar
  17. 17.
    Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real behavior. Inf. Syst 33(1), 64–95 (2008)CrossRefGoogle Scholar
  18. 18.
    Song, M., van der Aalst, W.: Supporting process mining by showing events at a glance. In: WITS 2007, pp. 139–145 (2007)Google Scholar
  19. 19.
    Spence, R.: Information Visualization - An Introduction. Springer, Cham (2014). Scholar
  20. 20.
    van der Aalst, W.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013 (2013). Article no. 507984Google Scholar
  21. 21.
    van der Aalst, W.: Process Mining: Data Science in Action. Springer, Berlin (2016). CrossRefGoogle Scholar
  22. 22.
    van der Aalst, W., de Leoni, M., ter Hofstede, A.: Process mining and visual analytics: breathing life into business process models. BPM reports, (2011)Google Scholar
  23. 23.
    van Eck, M.L., Lu, X., Leemans, S.J.J., van der Aalst, W.M.P.: PM\(^2\): a process mining project methodology. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 297–313. Springer, Cham (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christopher Klinkmüller
    • 1
    Email author
  • Richard Müller
    • 2
  • Ingo Weber
    • 1
  1. 1.Data61, CSIROEveleighAustralia
  2. 2.Leipzig UniversityLeipzigGermany

Personalised recommendations